

ಕರ್ನಾಟಕ ರಾಜ್ಯ ಅಕ್ಕಮಹಾದೇವಿ ಮಹಿಳಾ ವಿಶ್ವವಿದ್ಯಾನಿಲಯ, ವಿಜಯಪುರ (ಹಿಂದಿನ ಪದನಾಮ 'ಕರ್ನಾಟಕ ರಾಜ್ಯ ಮಹಿಳಾ ವಿಶ್ವವಿದ್ಯಾನಿಲಯ, ವಿಜಯಪುರ')

Karnataka state Akkamahadevi Women's University, Vijayapura (Formerly known as "Karnataka State Women's University, Vijayapura")

DEPARTMENT OF STATISTICS

Scheme of Teaching and Examinations and Syllabus of

B.A./B.Sc. (Hons) Statistics, B.A./B.Sc. with Statistics as a Major/Minor Subject

As per NATIONAL EDUCATION POLICY 2020 regulations w.e.f. 2021-22 and onwards

Approved in BoS In Statistics (UG) dated 29-09-2021

Preamble

The subject wise expert committee constituted by the Department of Higher Education, Government of Karnataka, Bangalore vide GO No. ED 260 UNE 2019 (PART-1) dated 13.08.2021 drafted model curriculum syllabus for the First Year (First & Second Semesters) B.A./B.Sc.(Basic/Honors) Statistics and detailed Course Structure for B.A./B.Sc.(Honors) Statistics and M.Sc. (One Year) Statistics.

Probability and Statistics is the language of uncertainties, riddled modern information age. Statistics facilitates the decision making process by quantifying the element of chance or uncertainties. Its descriptive and inferential procedures not only formulate the basis of the growth of almost all disciplines of the contemporary world, and also provide an array of employment avenues in all fields. This is a rigorous program in Probability Theory , Statistical Inference, Multivariate Analysis, Linear Models and Regression Analysis and Sample surveys and Design of Experiments designed to give a sound foundation in fundamentals and training in practical Statistics leading to statistical data analysis.

The eight semester 176 credit program has a variety of elective courses to choose from including enough courses on statistical software. A person successfully completing the program will have enough knowledge and expertise to statistically analyze small and large univariate and multivariate data sets, pursue advanced courses in Statistics or a Ph.D. in Statistics, work in software/data analytics industry as domain expert, independently consult for statistical data analysis. The program has proved to be one of the best in traditional Indian Universities/Institutes and has demand from students within and outside the State/Country.

The members of BoS(UG) in Statistics, KSAWUV, discussed the contents of the model curriculum prepared by the committee constituted by KSHEC in the meeting held on 29-09-2021 and resolved to approve the syllabus and further recommended for implementation of the same w.e.f. 2021-22 and onwards.

to the disciplinary-area boundaries;

(ii) Investigative skills, including skills of independent thinking of Statistics-related issues and problems;

(iii)Communication skills involving the ability to listen carefully, to read texts and reference material analytically and to present information in a concise manner to different groups/audiences of technical or popular nature;

(iv)Analytical skills involving paying attention to details and ability to construct logical

Arguments using correct technical language related to Statistics and ability to translate them with popular language when needed;

(v) ICT skills;

(vi)Personal skills such as the ability to work both independently and in a group.

11. Undertake research projects by using research skills- preparation of questionnaire, conducting national sample survey, research projects using sample survey, sampling techniques. 12. Understand and apply principles of least squares to fit a model to the given data, study the association between the variables, applications of Probability Theory and Probability Distributions.

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	30	70
Practical	15	35(30+5(Practical record))
Projects	30	70
Experiential Learning	30	70
(Internships, etc.)		

Assessment

Weightage for assessments (in percentage)

Model Program Structures for the Under-Graduate Programs in Universities and Colleges in Karnataka

Bachelor of Arts (Basic/ Hons.)/ Bachelor of Science (Basic/ Hons.) etc. with Statistics as Major with practicals and any other subject as

minor									
Sem.	Discipline Core (DSC) (Credits)	Discipline	Ability En	hancement	Skill Enhancem	ent Courses (SEC)	Total		
	(L+T+P)	Elective(DSE) / Open	Compulso	ry Courses	Skill based (Credits)	Value based (Credits)	Credits		
		Elective (OE)	(AECC), I	anguages	(L+T+P)	(L+T+P)			
		(Credits) (L+T+P)	(Credits)(L+T+P)					
Ι	Descriptive Statistics(4)+ Practical (2)	OE-1 (3)	L1-1 (3),		SEC-1: Digital Fluency		23		
	Discipline B1(4+2)		L2-1(3)		(2) (1+0+2)				
			(3+1+0						
			each)						
II	Probability and Distributions (4) +	OE-2 (3)	L1-2(3),	Environmen		Health and Wellness/	25		
	Practical (2)		L2-2 (3)	talStudies		Social & Emotional			
	Discipline B2(4+2)		(3+1+0	(2)		Learning (2) (1+0+2)			
			each)						
		Exit opt	ion with Ce	rtificate (48 credi	ts)				
III	Calculus and Probability	OE-3 (3)	L1-3 (3),		SEC-2: Artificial		23		
	Distributions(4) +Practical (2)		L2-3(3)		Intelligence $(2)(1+0+2)$				
	Discipline B3(4+2)		(3+1+0						
			each)						
IV	Statistical Inference-I (4) +	OE-4 (3)	L1-4 (3),	Constitution of		Sports/NCC/NSS etc.	25		
	Practical (2)		L2-4(3)	India (2)		(2) (1+0+2)			
	Discipline B4(4+2)		(3+1+0						
			each)						
		Exit op	otion with Di	ploma (96 credits	s)				
	Choose any one Discipline as Major, the other as the Minor								
V	Matrix Algebra and Regression	Statistics E-1(3:0:0)			SEC-3: Cyber Security	Ethics & Self Aware-	20		
	Analysis (3)+Practical (2)				(2) (1+0+2)	ness (2) (1+0+2)?			
	Analysis of variance and design of								
	experiments(3)+Practical (2)								
	Discipline B5(3+2)								

VI	Statistical Inference-II(3)+	Statistics E-2(3:0:0)			SEC-4: Professional/		20
	Practical (2)				Societal		
	Sample Surveys and Statistics for				Communication (2)		
	National Development (3)+						
	Practical (2)						
	Discipline B6(3+2)						
	Exit option v	with Bachelor of Arts, E	3.A. / Bachel	or of Science, B.	Sc. Basic Degree (136 cr	edits)	
VII	Real Analysis (3)+ Practical (2)	Statistics E-3(3:0:0)					20
	Probability Theory (4)	Res. Methodology (3)					
	Theory of Estimation(3)+Practical (2)						
VIII	Linear Algebra (4)	Statistics E-4(3:0:0)					20
	Testing of hypotheses (4)	Research Project (6)					
	Linear models and Design of						
	Experiments (3)						
А	ward of Bachelor of Arts Honours, B.A. (He	ons.)/ Bachelor of Scienc	e Honours, E	B.Sc. (Hons) degree	ee in a discipline etc. (176	credits)	
IX	Multivariate Analysis(3)+ Practical	Statistics E-5(3:0:0)					20
	(2)	Research					
	Decision Theory and Bayesian	Methodology(3)					
	Inference (4)						
	Distribution Theory (3)+Practical (2)						
X	Stochastic Processes(4)	Statistics E-6					20
	Time Series Analysis (3)	(3:0:0)					
	Machine Learning (4)	Research Project (6)					
Α	ward of Master of Science Degree in Stat	istics					

	Summary of Discipline Specific Courses (DSC)					
Semester	Course Code	Title of the Paper	Credits			
I DSC A1		Descriptive Statistics	4			
		Practicals based on DSC A1	2			
	DSC A2	Probability and Distributions	4			
II		Practicals based on DSC A2	2			
	DSC A3	Calculus and Probability Distributions	4			
III		Practicals based on DSC A3	2			
IV/	DSC A4	Statistical Inference-I	4			
IV		Practicals based on DSC A4	2			
	DSC A5	Matrix Algebra and Regression Analysis	3			
		Practicals based on DSC A5	2			
v	DSC A6	Analysis of variance and design of experiments	3			
		Practicals based on DSC A6	2			
	DSC A7	Statistical Inference-II	3			
VI		Practicals based on DSC A7	2			
V I	DSC A8	Sample Surveys and Statistics for National Development	3			
		Practicals based on DSC A8	2			
	DSC A9	Real Analysis	3			
		Practicals based on DSC A9	2			
VII	DSC A10	Probability Theory	4			
	DSC A11	Theory of Estimation	3			
		Practicals based on DSC A11	2			
	DSC A12	Linear Algebra	4			
VIII	DSC A13	Testing of hypotheses	4			
-	DSC A14	Linear models and Design of Experiments	3			

Semester	Course Code	Title of the Paper	Credits
IV	DSC A15	Multivariate Analysis	3
		Practicals based on DSC A15	2
	DSC A16	Decision Theory and Bayesian Inference	4
IX	DSC A17	Distribution Theory	3
		Practicals based on DSC A17	2
	DSC A18 Stochastic Processes(4)		4
Х	DSC A19	Time Series Analysis (3)	4
	DSC A20	Machine Learning (4)	3

List of Discipline Specific Electives (DSE)

- Actuarial Statistics
- Advanced Statistical Inference
- Analysis of Categorical Data
- Analysis of Clinical Trials
- Artificial Intelligence with R
- Bayesian Inference
- Bio-Statistics
- Computational Statistics
- Data Analytics with R/Python
- Data Science : Multivariate Techniques with R /Python
- Data Science with R/Python
- Demography
- Extreme value Theory
- Financial Statistics
- Econometrics
- Multivariate Techniques
- Nonparametric and Semiparametric Methods
- Operations Research
- Project Work
- Reliability Analysis
- Reliability and Statistical Quality Control
- Statistical Learning and Data Mining with R/Python
- Statistical Quality Control
- Stochastic Models in Finance
- Survival Analysis
- Time Series Analysis
- Sampling Theory and Applications

List of Open Elective (OE) for first two semesters

- 1) Statistical Methods
- 2) Business Statistics
- 3) Applied statistics
- 4) Biostatistics

Curriculum Structure for the Undergraduate Degree Program

B.Sc.

Total Credits for the Program: 176 Name of the Degree Program : B. Sc. Starting year of implementation: 2021-22 Discipline/Subject: Statistics(Major)

Program Articulation Matrix

This matrix lists only the core courses. Core courses are essential to earn the degree in that discipline/subject. They include courses such as theory, laboratory, project, internships etc. Elective courses may be listed separately

Sem	Title /Name	Program	Pre-requisite	Pedagogy##	Assessment\$
ester	of the course	outcomes	course(s)		
		that the			
		course			
		addresses			
		(not more			
		than 3 per			
		course)			
1	Descriptive	PO1,PO2,PO	Mathematics	1. The course is taught	The assessment is
	Statistics	8	of 12 th level	using traditional chalk	done using
				and talk method using	continuous
				problem solving through	assessment through
				examples and exercises.	written test, open
				2. Students are	book examination,
				encouraged to use	viva-voce, seminars,
				resources available on	and group
				open sources.	discussions.
1	Practical	PO5, PO6	Mathematics	The course is taught using	Assessment of
			of 12 th level	Excel software and/or	learning through
				manually to carry out	experiments
				descriptive statistical	
		D07 D00 D0		analysis.	
2	Probability and	PO7,PO9,PO	Mathematics	1. The course is taught	The assessment is
	Distributions	10	of 12 th level	using traditional chaik	done using
				and talk method using	continuous
				avamples and avaraises	written test open
				2 Students are	book examination
				2. Students are	viva-voce seminars
				resources available on	and group
				open sources	discussions
2	Practical	PO5 PO6	Mathematics	The course is taught using	Assessment of
-	I I avtival	1 00,1 00	of 12 th level	R programming software	learning through
				and/or manually to carry	experiments
				out descriptive statistical	caperiments
				analysis	

Pedagogy for student engagement is predominantly lectures. However, other pedagogies enhancing

better student engagement to be recommended for each course. The list includes active learning/ course projects/ problem or project based learning/ case studies/self study like seminar, term paper or MOOC \$ Every course needs to include assessment for higher order thinking skills (Applying/ Analyzing/ Evaluating/ Creating). However, this column may contain alternate assessment methods that help formative assessment (i.e. assessment for learning).

Course Pre-requisite(s): II PUC with Mathematics

Course Outcomes (COs)

At the end of the course the student should be able to:

- 1. Acquire knowledge of introductory statistics, its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.
- 2. Get knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc.
- 3. Perceive the knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.
- 4. Learn different of types of data reflecting independence and association between two or more attributes.
- 5. Develop ability to critically assess a standard report having graphics, probability statements.
- Conceptualize the probabilities of events including frequentist and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem,
- 7. Get knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments,
- 8. Learn knowledge of important discrete and continuous distributions such as Binomial, Poisson, Normal distributions.

9. Acquire knowledge on R-programming in the descriptive statistics and probability models.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
1. Knowledge of introductory statistics, its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.	х	X			х	Х						
2.Knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc.			X	х	х	Х				Х	X	
3. Knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.				х	х	Х		Х		Х	X	
4.Knowledge of types of data reflecting independence and association between two or more attributes				Х	X	Х				Х		Х
5. Develop ability to critically assess a standard report having graphics, probability statements.					X	X	X		X			
6. Knowledge to conceptualize the probabilities of events including frequentist and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem.					Х	х			Х	Х		
7. Knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments.					Х	Х			Х	Х		
8. Knowledge of important discrete and continuous distributions such as Binomial, Poisson, Normal, distributions.					X	X			X	X		
9. Knowledge on R-programming in the descriptive statistics and probability models.					X	X			X	X		

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. 'X' in the intersection cell indicates that particular course outcome addresses that particular program outcome.

BSc Semester 1

Course Title: Descriptive Statistics					
Total Contact Hours: 56	Course Credits:04				
Formative Assessment Marks: 30	Duration of ESA/Exam: 3hours				
Model Syllabus Authors: State level NEP-model curriculum setting committee members-Statistics	Summative Assessment Marks: 70				

Title of the Course: Descriptive Statistics

Number of Theory	Number of lecture	Number of	Number of practical		
Credits	hours/semester	practical Credits	hours/semester		
4	56	2	52		
	Content of 7			56 Hrs	
Unit _ 1 · Introduction t	Content of 1	Theory Course 1		13 Hrs	
Statistics: Definition and scope. Concepts of statistical population and sample (SRS, Stratified, Systematic and Cluster sampling methods Definitions only). Data: quantitative and qualitative, cross sectional and time-series, discrete and continuous. Scales of measurement: nominal, ordinal, interval and ratio. Presentation of data: tabular and graphical. Frequency distributions, cumulative frequency distributions and their graphical representations. Stem and leaf displays. (Ref. 4)					
Unit – 2: Univariate Dat	ta Analysis			18 Hrs	
Measures of Central Tendency: Mean, weighted mean, trimmed mean, Median, Mode, Geometric and harmonic means, properties, merits and limitations, relation between these measures. Measures of Dispersion: Range, Quartile deviation, Mean deviation, Standard deviation and their relative measures. Gini's Coefficient, Lorenz Curve. Moments, Skewness and Kurtosis. Quantiles and measures based on them. Box Plot, Outliers, Chebyshey's inequality, normal data sets. (Ref 10)					
Unit – 3: Bivariate Dat	ta Analysis			15 Hrs	
Bivariate Data, Scatter plot, Correlation, Karl Pearson's correlation coefficient, Rank correlation – Spearman's and Kendall's measures. Concept of errors, Principle of least squares, fitting of polynomial and exponential curves. Simple linear regression and its properties. Fitting of linear regression line and coefficient of determination. (Ref. 10)					
Unit –4: Multivariate D	Data Analysis			10 Hrs	
Analysis of Categorical measures of association Multivariate Data Visua multiple and partial corre	Data: Contingency ta - odds ratio, Pearson lization, mean vector elation coefficients. Re	able, independence an 's and Yule's measure and dispersion matrix, esidual error variance. (d association of attributes, e, Multivariate Frequencies, Multiple linear regression, (Ref. 7)		

References

- 1. Agresti, A. (2010): Analysis of Ordinal Categorical Data, 2nd Edition, Wiley.
- 2. Anderson T.W. and Jeremy D. Finn (1996). The New Statistical Analysis of Data, Springer
- 3. Freedman, D., Pisani, R. and Purves, R. (2014), Statistics, 4th Edition, W. W. Norton & Company.
- 4. Gupta, S.C. (2018), Fundamental of Statistics, Himalaya Publishing House, 7th Edition.
- 5. Gupta S.C. and V.K. Kapoor (2020), Fundamental of Mathematical Statistics, Sultan Chand and Co. 12th Edition.
- 6. Hogg, R. V. McKean J. W. and Craig, A. T. (2012), Introduction to Mathematical Statistics, Pearson 7th Edition.
- 7. Joao Mendes Moreira, Andre C P L F de Carvalho, Tomas Horvath (2018), General Introduction to Data Analytics, Wiley.
- 8. Johnson, R.A. and Bhattacharyya, G.K. (2006), Statistics: Principles and methods. 5th Edition, John Wiley & Sons, New York.
- 9. Medhi, J. (2005), Statistical Methods, New Age International.
- 10. Ross, S.M. (2014), Introduction to Probability and Statistics for Engineers and Scientists, 5th Edition, Academic Press.
- 11. Tukey, J.W. (1977), Exploratory Data Analysis, Addison-Wesley Publishing Co.

Pedagogy

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment: Total 30 marks				
Assessment Occasion/ type	Weightage in Marks			
Internal Test 1	1/3			
Internal Test 2	1/3			
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3			
Total	01			

14-09-2021 Date

Course Co-ordinator

Subject Committee Chairperson

Content of Practical Course 1

(Computing all the practicals manually and using Excel)

- 1. Presentation of data by frequency tables, diagrams and graphs, stem and leaf, partition values.
- 2. Arithmetic Mean (AM), geometric mean, harmonic mean, weighted AM, trimmed mean, corrected mean.
- 3. Mode, median, partition values.
- 4. Absolute and relative measures of dispersion, Box plots.
- 5. Problems on moments, skewness and kurtosis.
- 6. Fitting of curves by least squares method.
- 7. Product moment correlation coefficient and rank correlation.
- 8. Regression of two variables.
- 9. Multivariate Descriptive statistics, mean Vector, dispersion matrix correlation matrix, Partial and Multiple correlation.
- 10. Problems on Association of attributes.

B.Sc. Semester 2

Course Title: Probability and Distributions					
Total Contact Hours: 56	Course Credits:04				
Formative Assessment Marks: 30	Duration of ESA/Exam: 3hours				
Model Syllabus Authors: State level NEP-model curriculum setting committee members-Statistics	Summative Assessment Marks: 70				

Course Pre-requisite(s): II PUC with Mathematics

Title of the Course: Probability and Distributions

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of practical hours/semester			
4	56	2	52			
	Content	of Theory Course 2		56Hrs		
Unit –1 : Probability						
Random experiment, sample space and events, algebra of events. Definitions of Probability- Classical, statistical, subjective and axiomatic approaches – illustrations and applications, Addition rule, Conditional probability, independence of events and multiplication rule, Total probability rule, Bayes theorem- applications.						
Unit -2:Random V	ariables And Mather	natical Expectation-(C	One Dimension)	14 Hrs		
Definitions of discrete and continuous random variables, Distribution function, probability mass and density functions – properties and illustrations, Expectation of a random variable and rules of expectation and related results, Moments and moment generating function – properties and uses						
Unit –3 : Standard Distributions						
Bernoulli, Binomia relations for prob distribution and its	al, Poisson, distributior abilities and moments properties.	ns– mean, variance, m s of Binomial and Po	oments and m. g. f. recursive bisson distributions, Normal			

Unit -4: Data Analysis Using R14 HrsIntroduction to R: Installation, command line environment, overview of capabilities, brief
mention of open source philosophy. R as a calculator: The four basic arithmetic operations. Use
of parentheses nesting up to arbitrary level. The power operation. Evaluation of simple
expressions. Quotient and remainder operations for integers. Standard functions, e.g., sin, cos,
exp, log. The different types of numbers in R: Division by zero leading to Inf or -Inf. NaN. NA.
No need to go into details. Variables. Creating a vector using c(), seq() and colon operator. How
functions map over vectors. Functions to summarize a vector: sum, mean, sd, median etc.
Extracting a subset from the vector (by index, by property). R as a graphing calculator:
Introduction to plotting. Plot(), lines(), abline(). No details about the graphics parameters except
colour and line width. Barplot, Pie chart and Histogram. Box plot. Scatter plot and simple linear
regression using lm(y~x). Problems on discrete and continuous probability distributions.14 Hrs

References

- 1. Dudewitz. E.J. and Mishra. S. N. (1998), Modern Mathematical Statistics. John Wiley.
- 2. Goon A.M., Gupta M.K., Das Gupta .B. (1991), Fundamentals of Statistics, Vol. I, World Press, Calcutta.
- 3. Gupta. S.C and V.K. Kapoor (2020), Fundamentals of Mathematical Statistics, Sultan Chand and Co, 12th Edition.
- 4. Hogg, R.V., Tanis, E.A. and Rao J.M. (2009), Probability and Statistical Inference, Seventh Edition, Pearson Education, New Delhi.
- 5. Mood, A.M., Graybill, F.A. and Boes, D.C. (2007), Introduction to the Theory of Statistics, 3rd Edition. (Reprint), Tata McGraw-Hill Pub. Co. Ltd.
- 6. Ross, S. (2002), A First Course in Probability, Prentice Hall.
- 7. Sudha G. Purohit, Sharad D. Gore, Shailaja R Deshmukh,(2009), Statistics Using R, Narosa Publishing House.
- 8. R for beginners by Emmanuel Paradis (freely available at <u>https://cran.r-</u> project.org/doc/contrib/Paradisrdebuts_en.pdf)

Pedagogy

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment: 30 marks					
Assessment Occasion/ type	Weightage in Marks				
Internal Test 1	1/3				
Internal Test 2	1/3				
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3				
Total	01				

14-09-2021		
Date	Course Co-ordinator	Subject Committee
Chairperson		

Content of Practical Course 2: List of Experiments to be conducted

(Computing all the practicals manually and using Excel/R)

- 1. Two exercise on Descriptive statistics (Presentations, Summarizations, correlations, regression and Graphs using R)
- 2. Computing probability: using addition and multiplication theorems.
- 3. Conditional probability and Bayes' theorem.
- 4. Problems on pmf, expectation, variance, quantiles, skewness, kurtosis (Discrete Case).
- 5. Problems on pdf, expectation, variance, quantiles, skewness, kurtosis (Continuous case).
- 6. Problems on discrete probability distributions(Binomial and Poisson)
- 7. Problems on Normal probability distributions
- Computation of moments and Moment generating functions (Discrete and Continuous Case).
- 9. Fitting of distributions Binomial, Poisson, Normal distributions.
- 10. Generation of random samples. (Binomial, Poisson, Normal)

Model Program Structure for the Under-Graduate Programs in Universities and Colleges of Karnataka

Bachelor of Science (Basic/Hons.) With Statistics as Minor with practicals and any other subject as major Name of the Degree Program: B.Sc.Discipline Core: Statistics(Minor)Total Credits for the Program: 136(till 6th semesters)Starting year of implementation: 2021-22

Program Outcomes

By the end of the program the students will be able to:

- 1. Acquire fundamental/systematic or coherent understanding of the academic field of Statistics and its different learning areas and applications.
- Develop and demonstrate an ability to understand major concepts in various disciplines of Statistics.
- Demonstrate the ability to use skills in Statistics and different practicing areas for formulating and tackling Statistics related problems and identifying and applying appropriate principles and methodologies to solve a wide range of problems associated with Statistics.
- Understand procedural knowledge that creates different types of professionals related to subject area of Statistics, including professionals engaged in government/public service and private sectors.
- 5. Plan and execute Statistical experiments or investigations, analyze and interpret data/information collected using appropriate methods, including the use of appropriate statistical software including programming languages, and report accurately the findings of the experiment/investigations.
- 6. Have a knowledge regarding use of data analytics tools like Excel and R-programming.
- 7. Developed ability to critically assess a standard report having graphics, probability statements.
- 8. Analyze, interpret the data and hence help policy makers to take a proper decision.
- Recognize the importance of statistical modelling and computing, and the role of approximation and mathematical approaches to analyze the real problems using various statistical tools.
- 10. Demonstrate relevant generic skills and global competencies such as
 - (i) Problem-solving skills that are required to solve different types of Statistics related

problems with well-defined solutions, and tackle open-ended problems, that belong to the disciplinary-area boundaries;

(ii) Investigative skills, including skills of independent thinking of Statistics-related issues and problems;

(iii)Communication skills involving the ability to listen carefully, to read texts and reference material analytically and to present information in a concise manner to different groups/audiences of technical or popular nature;

(iv)Analytical skills involving paying attention to details and ability to construct logical

Arguments using correct technical language related to Statistics and ability to translate them with popular language when needed;

(v) ICT skills;

(vi)Personal skills such as the ability to work both independently and in a group.

11. Undertake research projects by using research skills- preparation of questionnaire, conducting national sample survey, research projects using sample survey, sampling techniques. 12. Understand and apply principles of least squares to fit a model to the given data, study the association between the variables, applications of Probability Theory and Probability Distributions.

Weightage for assessments (in percentage)						
Type of Course	Formative Assessment / IA	Summative Assessment				
Theory	30	70				
Practical	15	35(30+5(Practical record))				
Projects	30	70				
Experiential Learning	30	70				
(Internships, etc.)						

Assessment

Model Program Structures for the Under-Graduate Programs in Universities and Colleges in Karnataka

Bachelor of Arts (Basic/ Hons.)/ Bachelor of Science (Basic/ Hons.) etc. with Statistics as Minor with practicals and any other

subject as major

Sem.	Discipline Core(DSC) (Credits)	Discipline	Ability Enhar	ncement	Skill Enhancem	ent Courses (SEC)	Total
	(L+T+P)	Elective(DSE) /	Compulsory	Courses	Skill based (Credits)	Value based	Credits
		Open Elective (OE)	(AECC), Lan	guages	(L+T+P)	(Credits)	
		(Credits) (L+T+P)	(Credits)(L+)	<u>(+P)</u>		(L+T+P)	
Ι	Discipline A1(4+2)	OE-1 (3)	L1-1 (3), L2-		SEC-1: Digital Fluency		23
	Descriptive Statistics(4)+ Practical (2)		1(3)		(2)(1+0+2)		
			(3+1+0 each)				
II	Discipline A2(4+2)	OE-2 (3)	L1-2(3), L2-2	Environmen		Health and Wellness/	25
	Probability and Distributions (4) +		(3)	talStudies		Social & Emotional	
	Practical (2)		(3+1+0 each)	(2)		Learning (2)	
						(1+0+2)	
		Exit opti	on with Certific	cate (48 credits)			
III	Discipline A3(4+2)	OE-3 (3)	L1-3 (3), L2-		SEC-2: Artificial		23
	Calculus and Probability		3(3)		Intelligence $(2)(1+0+2)$		
	Distributions(4) +Practical (2)		(3+1+0 each)		-		
IV	Discipline $A4(4+2)$	OE-4 (3)	L1-4 (3), L2-	Constitution of		Sports/NCC/NSS etc.	25
	Statistical Inference(4) +		4(3)	India (2)		(2)(1+0+2)	
	Practical (2)		(3+1+0 each)				
		Evit on	tion with Dinlor	no (06 orodite)			
		Choose any one D	iscipline as Mai	or the other as the	Minor		
V	Discipline $A5(3+2)$	DSE $\Delta_{-1}(3:0:0)$			SEC-3: Cyber Security	Fthics & Self	20
•	Discipline A6(3+2)	$DDL M^{-1}(5.0.0)$			(2)(1+0+2)	Aware-ness (2)	20
	Elements of Multivariate analysis and				(2)(1+0+2)	(1+0+2)?	
	regression analysis(3) +Practical (2)					(1.0.2)	
VI	Discipline A7(3+2)	DSEA-2(3:0:0)			SEC-4: Professional/		20
	Discipline A8(3+2)	``´´´			Societal		
	Sample Surveys and Design and	l			Communication (2)		
	Analysis of Experiments(3)+						
	Practical (2)						
	Exit option wit	th Bachelor of Arts, B	.A. / Bachelor o	of Science, B. Sc.	Basic Degree (136 credit	s)	

	Summary of Discipline Specific Courses (DSC)					
Semester	mester Course Code Title of the Paper					
Ŧ	DSC B1	Descriptive Statistics	4			
1		Practicals based on DSC B1	2			
	DSC B2	Probability and Distributions	4			
II		Practicals based on DSC B2				
	DSC B3	Calculus and Probability Distributions	4			
III Practicals based on DSC B3		Practicals based on DSC B3	2			
IV.	DSC B4	Statistical Inference	4			
IV		Practicals based on DSC B4	2			
v	DSC B5	Elements of Multivariate Analysis and Regression analysis	3			
,		Practicals based on DSC B5	2			
VI	DSC B6	Sample surveys and Design and Analysis of experiments	3			
* 1		Practicals based on DSC B6	2			

List of Open Elective (OE) for first two semesters

- 1) Statistical Methods
- 2) Business Statistics
- 3) Applied statistics
- 4) Biostatistics

Curriculum Structure for the Undergraduate Degree Program

B.Sc.

Total Credits for the Program: 136 Name of the Degree Program : B. Sc. Starting year of implementation: 2021-22 Discipline/Subject: Statistics(minor)

Program Articulation Matrix:

This matrix lists only the core courses. Core courses are essential to earn the degree in that discipline/subject. They include courses such as theory, laboratory, project, internships etc. Elective courses may be listed separately

Sem	Title /Name	Program	Pre-requisite	Pedagogy##	Assessment\$
ester	of the course	outcomes that	course(s)		
		the course			
		addresses (not			
		more than 3			
-		per course)		1 701	
1	Descriptive Statistics	PO1,PO2,PO8	Mathematics	1. The course is taught	The assessment is
			of 12 th level	and talk mathed using	done using
				and talk method using	continuous
				examples and exercises	written test open
				2 Students are	book examination
				encouraged to use	viva-voce seminars
				resources available on	and group
				open sources.	discussions.
1	Practical	PO5, PO6	Mathematics	The course is taught using	Assessment of
			of 12 th level	Excel software and/or	learning through
				manually to carry out	experiments
				descriptive statistical	1
				analysis.	
2	Probability and	PO7,PO9,PO10	Mathematics	1. The course is taught	The assessment is
	Distributions		of 12 th level	using traditional chalk	done using
				and talk method using	continuous
				problem solving through	assessment through
				2 Students are	book examination
				encouraged to use	viva-voce seminars
				resources available on	and group
				open sources	discussions.
2	Practical	PO5,PO6	Mathematics	The course is taught using	Assessment of
			of 12 th level	R programming software	learning through
				and/or manually to carry	experiments
				out descriptive statistical	P
				analysis	

Pedagogy for student engagement is predominantly lectures. However, other pedagogies enhancing better student engagement to be recommended for each course. The list includes active learning/ course projects/ problem or project based learning/ case studies/self study like seminar, term paper or MOOC

\$ Every course needs to include assessment for higher order thinking skills (Applying/ Analyzing/ Evaluating/ Creating). However, this column may contain alternate assessment methods that help formative assessment (i.e. assessment for learning).

Course Pre-requisite(s): II PUC with Mathematics

Course Outcomes (COs)

At the end of the course the student should be able to

- 1. Acquire knowledge of introductory statistics, its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.
- 2. Get knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc.
- 3. Perceive the knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.
- 4. Learn different of types of data reflecting independence and association between two or more attributes.
- 5. Develop ability to critically assess a standard report having graphics, probability statements.
- Conceptualize the probabilities of events including frequentist and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem,
- 7. Get knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments,
- 8. Learn knowledge of important discrete and continuous distributions such as Binomial, Poisson, Normal distributions.
- 9. Acquire knowledge on R-programming in the descriptive statistics and probability models.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)		2	3	4	5	6	7	8	9	10	11	12
1. Knowledge of introductory statistics, its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.	X	X			х	Х						
2.Knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc.			Х	Х	х	Х				Х	Х	
3. Knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.				X	х	Х		Х		Х	X	
4.Knowledge of types of data reflecting independence and association between two or more attributes				Х	X	X				Х		Х
5. Develop ability to critically assess a standard report having graphics, probability statements.					X	X	X		X			
6. Knowledge to conceptualize the probabilities of events including frequentist and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem.					Х	х			Х	Х		
7. Knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments.					Х	Х			Х	Х		
8. Knowledge of important discrete and continuous distributions such as Binomial, Poisson, Normal, distributions.					X	X			X	X		
9. Knowledge on R-programming in the descriptive statistics and probability models.					X	X			X	X		

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. 'X' in the intersection cell indicates that particular course outcome addresses that particular program outcome.

BSc Semester 1

Course Title: B.Sc	
Total Contact Hours: 56	Course Credits:04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3hours
Model Syllabus Authors: State level NEP-model curriculum setting committee members-Statistics	Summative Assessment Marks: 70

Title of the Course: Descriptive Statistics

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of practical hours/semester		
4	56	2	52		
	Content of T	Theory Course 1		56 Hrs	
Unit – 1 : Introduction t	to Statistics			13 Hrs	
Statistics: Definition and scope. Concepts of statistical population and sample (SRS, Stratified, Systematic and Cluster sampling methods Definitions only). Data: quantitative and qualitative, cross sectional and time-series, discrete and continuous. Scales of measurement: nominal, ordinal, interval and ratio. Presentation of data: tabular and graphical. Frequency distributions, cumulative frequency distributions and their graphical representations. Stem and leaf displays. (Ref. 4)					
Unit – 2: Univariate Dat	ta Analysis			18 Hrs	
Measures of Central Tendency: Mean, weighted mean, trimmed mean, Median, Mode, Geometric and harmonic means, properties, merits and limitations, relation between these measures. Measures of Dispersion: Range, Quartile deviation, Mean deviation, Standard deviation and their relative measures. Gini's Coefficient, Lorenz Curve. Moments, Skewness and Kurtosis. Quantiles and measures based on them. Box Plot, Outliers, Chebyshey's inequality, normal data sets, (Ref.10).					
Unit – 3: Bivariate Dat	ta Analysis			15 Hrs	
Bivariate Data, Scatter plot, Correlation, Karl Pearson's correlation coefficient, Rank correlation – Spearman's and Kendall's measures. Concept of errors, Principle of least squares, fitting of polynomial and exponential curves. Simple linear regression and its properties. Fitting of linear regression line and coefficient of determination. (Ref. 10)					
Unit –4: Multivariate D)ata Analysis			10 Hrs	
Analysis of Categorical measures of association Multivariate Data Visua multiple and partial corre	Data: Contingency ta - odds ratio, Pearson lization, mean vector elation coefficients. Re	able, independence an 's and Yule's measure and dispersion matrix, esidual error variance.	d association of attributes, e, Multivariate Frequencies, , Multiple linear regression, (Ref. 7)		

References

- 1. Agresti, A. (2010): Analysis of Ordinal Categorical Data, 2nd Edition, Wiley.
- 2. Anderson T.W. and Jeremy D. Finn (1996). The New Statistical Analysis of Data, Springer
- 3. Freedman, D., Pisani, R. and Purves, R. (2014), Statistics, 4th Edition, W. W. Norton & Company.
- 4. Gupta, S.C. (2018), Fundamental of Statistics, Himalaya Publishing House, 7th Edition.
- 5. Gupta S.C. and V.K. Kapoor (2020), Fundamental of Mathematical Statistics, Sultan Chand and Co. 12th Edition.
- 6. Hogg, R. V. McKean J. W. and Craig, A. T. (2012), Introduction to Mathematical Statistics, Pearson 7th Edition.
- 7. Joao Mendes Moreira, Andre C P L F de Carvalho, Tomas Horvath (2018), General Introduction to Data Analytics, Wiley.
- 8. Johnson, R.A. and Bhattacharyya, G.K. (2006), Statistics: Principles and methods. 5th Edition, John Wiley & Sons, New York.
- 9. Medhi, J. (2005), Statistical Methods, New Age International.
- Ross, S.M. (2014), Introduction to Probability and Statistics for Engineers and Scientists, 5th Edition, Academic Press.
- 11. Tukey, J.W. (1977), Exploratory Data Analysis, Addison-Wesley Publishing Co.

Pedagogy

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment: Total	30 marks
Assessment Occasion/ type	Weightage in Marks
Internal Test 1	1/3
Internal Test 2	1/3
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3
Total	01

Content of Practical Course 1

(Computing all the practicals manually and using Excel)

- 1. Presentation of data by frequency tables, diagrams and graphs, stem and leaf, partition values.
- 2. Arithmetic Mean (AM), geometric mean, harmonic mean, weighted AM, trimmed mean, corrected mean.
- 3. Mode, median, partition values.
- 4. Absolute and relative measures of dispersion, Box plots.
- 5. Problems on moments, skewness and kurtosis.
- 6. Fitting of curves by least squares method.
- 7. Product moment correlation coefficient and rank correlation.
- 8. Regression of two variables.
- 9. Multivariate Descriptive statistics, mean Vector, dispersion matrix correlation matrix, Partial and Multiple correlation.
- 10. Problems on Association of attributes.

B.Sc. Semester 2

Course Credits:04
Duration of ESA/Exam: 3hours
Summative Assessment Marks: 70

Course Pre-requisite(s): II PUC with Mathematics

Title of the Course: Probability and Distributions

Number of Theory Credits	Number of lecture	Number of practical Credits	f Number of practical				
4	56	2	52				
Content of Theory Course 2							
Unit –1 : Probability				15 Hrs			
Random experiment, samp statistical, subjective and Conditional probability, in theorem- applications.	Random experiment, sample space and events, algebra of events. Definitions of Probability- Classical, statistical, subjective and axiomatic approaches – illustrations and applications, Addition rule, Conditional probability, independence of events and multiplication rule, Total probability rule, Bayes theorem- applications						
Unit –2:Random Variables And Mathematical Expectation-(One Dimension)							
Definitions of discrete and continuous random variables, Distribution function, probability mass and density functions – properties and illustrations, Expectation of a random variable and rules of expectation and related results, Moments and moment generating function – properties and uses.							
Unit –3 : Standard Distributions							
Bernoulli, Binomial, Pois for probabilities and mon properties.	son, distributions– mea ments of Binomial and	n, variance, moments Poisson distributions	and m. g. f. recursive relations , Normal distribution and its				

Unit –4: Data Analysis Using R	14 Hrs
Introduction to R: Installation, command line environment, overview of capabilities, brief mention of open source philosophy. R as a calculator: The four basic arithmetic operations. Use of parentheses nesting up to arbitrary level. The power operation. Evaluation of simple expressions. Quotient and remainder operations for integers. Standard functions, e.g., sin, cos, exp, log. The different types of numbers in R: Division by zero leading to Inf or -Inf. NaN. NA. No need to go into details. Variables. Creating a vector using c(), seq() and colon operator. How functions map over vectors. Functions to summarize a vector: sum, mean, sd, median etc. Extracting a subset from the vector (by index, by property). R as a graphing calculator: Introduction to plotting. Plot(), lines(), abline(). No details about the graphics parameters except colour and line width. Barplot, Pie chart and Histogram. Box plot. Scatter plot and simple linear regression using lm(y~x). Problems on discrete and continuous probability distributions.	

References

- 1. Dudewitz. E.J. and Mishra. S. N. (1998), Modern Mathematical Statistics. John Wiley.
- 2. Goon A.M., Gupta M.K., Das Gupta .B. (1991), Fundamentals of Statistics, Vol. I, World Press, Calcutta.
- 3. Gupta. S.C and V.K. Kapoor (2020), Fundamentals of Mathematical Statistics, Sultan Chand and Co, 12th Edition.
- 4. Hogg, R.V., Tanis, E.A. and Rao J.M. (2009), Probability and Statistical Inference, Seventh Edition, Pearson Education, New Delhi.
- 5. Mood, A.M., Graybill, F.A. and Boes, D.C. (2007), Introduction to the Theory of Statistics, 3rd Edition. (Reprint), Tata McGraw-Hill Pub. Co. Ltd.
- 6. Ross, S. (2002), A First Course in Probability, Prentice Hall.
- 7. Sudha G. Purohit, Sharad D. Gore, Shailaja R Deshmukh,(2009), Statistics Using R, Narosa Publishing House.
- 8. R for beginners by Emmanuel Paradis (freely available at <u>https://cran.r-</u> project.org/doc/contrib/Paradisrdebuts_en.pdf)

Pedagogy

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment: 30 marks			
Assessment Occasion/ type	Weightage in Marks		
Internal Test 1	1/3		
Internal Test 2	1/3		
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3		
Total	01		

14-09-2021 Date

Course Co-ordinator

Subject Committee Chairperson

Content of Practical Course 2: List of Experiments to be conducted

(Computing all the practicals manually and using Excel/R)

- 1. Two exercise on Descriptive statistics (Presentations, Summarizations, correlations, regression and Graphs using R)
- 2. Computing probability: using addition and multiplication theorems.
- 3. Conditional probability and Bayes' theorem.
- 4. Problems on pmf, expectation, variance, quantiles, skewness, kurtosis (Discrete Case).
- 5. Problems on pdf, expectation, variance, quantiles, skewness, kurtosis (Continuous case).
- 6. Problems on discrete probability distributions(Binomial and Poisson)
- 7. Problems on Normal probability distributions
- Computation of moments and Moment generating functions (Discrete and Continuous Case).
- 9. Fitting of distributions Binomial, Poisson, Normal distributions.
- 10. Generation of random samples. (Binomial, Poisson, Normal)

Model Program Structure for the Under-Graduate Programs in Universities and Colleges of Karnataka

Bachelor of Science (Basic/Hons.) With Statistics as one of the majors with practicals with other subject as another major in 3rd year Name of the Degree Program: B.Sc. Discipline Core: Statistics (Major) semesters) Starting year of implementation: 2021-22

Total Credits for the Program: 176(till 8th

Program Outcomes

By the end of the program the students will be able to:

- 1. Acquire fundamental/systematic or coherent understanding of the academic field of Statistics and its different learning areas and applications.
- Develop and demonstrate an ability to understand major concepts in various disciplines of Statistics.
- Demonstrate the ability to use skills in Statistics and different practicing areas for formulating and tackling Statistics related problems and identifying and applying appropriate principles and methodologies to solve a wide range of problems associated with Statistics.
- Understand procedural knowledge that creates different types of professionals related to subject area of Statistics, including professionals engaged in government/public service and private sectors.
- 5. Plan and execute Statistical experiments or investigations, analyze and interpret data/information collected using appropriate methods, including the use of appropriate statistical software including programming languages, and report accurately the findings of the experiment/investigations.
- 6. Have a knowledge regarding use of data analytics tools like Excel and R-programming.
- 7. Developed ability to critically assess a standard report having graphics, probability statements.
- 8. Analyze, interpret the data and hence help policy makers to take a proper decision.
- Recognize the importance of statistical modelling and computing, and the role of approximation and mathematical approaches to analyze the real problems using various statistical tools.
- 10. Demonstrate relevant generic skills and global competencies such as
 - (i) Problem-solving skills that are required to solve different types of Statistics related

problems with well-defined solutions, and tackle open-ended problems, that belong to the disciplinary-area boundaries;

(ii) Investigative skills, including skills of independent thinking of Statistics-related issues and problems;

(iii)Communication skills involving the ability to listen carefully, to read texts and reference material analytically and to present information in a concise manner to different groups/audiences of technical or popular nature;

(iv)Analytical skills involving paying attention to details and ability to construct logical

Arguments using correct technical language related to Statistics and ability to translate them with popular language when needed;

(v) ICT skills;

(vi)Personal skills such as the ability to work both independently and in a group.

11. Undertake research projects by using research skills- preparation of questionnaire, conducting national sample survey, research projects using sample survey, sampling techniques. 12. Understand and apply principles of least squares to fit a model to the given data, study the association between the variables, applications of Probability Theory and Probability Distributions.

Weightage for assessments (in percentage)				
Type of Course	Formative Assessment / IA	Summative Assessment		
Theory	30	70		
Practical	15	35(30+5(Practical record))		
Projects	30	70		
Experiential Learning	30	70		
(Internships, etc.)				

Assessment

Model Program Structures for the Under-Graduate Programs in Universities and Colleges in Karnataka

Bachelor of Science (Basic/Hons.) /Bachelor of Arts (Basic/Hons.) With Statistics as one of the majors with practicals with other subject as another major in 3rd year

Sem.	Discipline Core (DSC)(Credits)	Discipline Elective(DSE)	E) Ability Enhancement		Skill Enhancement Courses (SEC)		Total
	(L+T+P)	/ Open Elective (OE)	Compulsory Courses (AECC),		Skill based (Credits)	Value based (Credits)	Credits
		(Credits) (L+T+P)	Languages (Credits)(L+T+P)		(L+T+P)	(L+T+P)	
Ι	Descriptive Statistics (4+2)	OE-1 (3)	L1-1 (3), L2-1		SEC-1: Digital		23
	Discipline B1(4+2)		(3)(3+1+0		Fluency (2) (1+0+2)		
			each)				
Ш	Probability and Distributions	OE-2 (3)	L1-2(3), L2-2	Environmental		Health & Wellness/	25
	(4+2)Discipline B2(4+2)		(3)	Studies (2)		Social & Emotional	
			(3+1+0 each)			Learning (2) (1+0+2)	
		Exit c	ption with Cert	ficate (48 credits)			
III	Calculus and Probability	OE-3 (3)	L1-3 (3), L2-		SEC-2: Artificial Inte-		23
	Distributions (4+2)		3(3)		elligence (2)(1+0+2)		
	Discipline B3(4+2)		(3+1+0 each)				
IV	Statistical Inference-I (4+2)	OE-4 (3)	L1-4 (3), L2-	Constitution of		Sports/NCC/NSS etc.	25
	Discipline B4(4+2)		4(3)	India (2)		(2) (1+0+2)	
			(3+1+0 each)				
		Exit	option with Dip	loma (96 credits)			
V	Matrix Algebra and	DS-B Elective 1 (3)			SEC-3: Cyber Security	Ethics & Self Aware-	20
	Regression Analysis (3+2)				(2) (1+0+2)	ness (2) (1+0+2)?	
	Analysis of variance and						
	design of experiments (3+2)						
	Discipline B5(3+2)						
VI	Statistical Inference-II (3+2)	DS-A Elective 1 (3)			SEC-4: Professional/		20
	Discipline B6(3+2)				Societal		
	Discipline B7(3+2)				Communication (2)		
	Exit option with Bachelor of Arts, B.A. / Bachelor of Science, B. Sc. Basic Degree (136 credits)						
	Choose any one Discipline as Major						

VII	Sample Surveys and Statistics	DS-A/B Elective 2(3)	20			
	for National Development (3+2)	Res. Methodology(3)				
	Real Analysis (3+2)					
	Probability Theory (4)					
VIII	Linear Algebra (4)	DS-A/B Elective 3(3)	20			
	Linear models and Design of	DS-A/B Elective 4(3)				
	Experiments (4)	Research Project (6)*				
	Award of Bachelor of Arts Honour	s, B.A. (Hons.)/ Bachelor of Science Honours, B.Sc. (Hons) degree in a discipline etc. (176 credits)				
IX	Multivariate Analysis (3+2)	DS-A/B Elective 2(3)	20			
	Decision Theory and Bayesian	Res. Methodology(3)				
	Inference (3+2)					
	Distribution Theory (4)					
Х	Stochastic Processes (4)	DS-A/B Elective 3(3)	20			
	Time Series Analysis (4)	DS-A/B Elective 4(3)				
		Research Project (6)*				
	Award of Master of Science Degree in Statistics					
Summary of Discipline Specific Courses (DSC)						
--	---------------------------------------	--	---	--	--	--
Semester	Course Code Title of the Paper					
-	DSC A1	Descriptive Statistics	4			
1		Practicals based on DSC A1	2			
	DSC A2	Probability and Distributions	4			
Π		Practicals based on DSC A2	2			
	DSC A3	A3 Calculus and Probability Distributions				
III		Practicals based on DSC A3	2			
N /	DSC A4	Statistical Inference-I	4			
IV		Practicals based on DSC A4	2			
	DSC A5	Matrix Algebra and Regression Analysis	3			
		Practicals based on DSC A5	2			
V	DSC A6	Analysis of variance and design of experiments	3			
		Practicals based on DSC A6	2			
M	DSC A7	Statistical Inference-II	3			
V I		Practicals based on DSC A7	2			
	DSC A8	Sample Surveys and Statistics for National Development	3			
		Practicals based on DSC A8	2			
VII	DSC A9	Real Analysis	3			
		Practicals based on DSC A9	2			
	DSC A10	Probability Theory	4			
VIII	DSC A11	Linear Algebra	4			
V 111	DSC A12	Linear models and Design of Experiments	4			
IX	DSC A13	Multivariate Analysis	3			
		Practicals based on DSC A13	2			
	DSC A14	Distribution Theory	3			
		Practicals based on DSC A14	2			
	DSC A15	Decision Theory and Bayesian Inference	4			
X7	DSC A16	Stochastic Processes	4			
X	DSC A17	Time Series Analysis	4			

List of Discipline Specific Electives (DSE)

- Actuarial Statistics
- Advanced Statistical Inference
- Analysis of Categorical Data
- Analysis of Clinical Trials
- Artificial Intelligence with R
- Asymptotic Theory of Statistical Inference
- Bayesian Inference
- Bio-Statistics
- Computational Statistics
- Data Analytics with R/Python
- Data Science : Multivariate Techniques with R /Python
- Data Science with R/Python
- Demography
- Extreme value Theory
- Financial Statistics
- Econometrics
- Machine Learning with R/Python
- Multivariate Techniques
- Nonparametric and Semiparametric Methods
- Operations Research
- Project Work-I
- Reliability Analysis
- Reliability and Statistical Quality Control
- Statistical Learning and Data Mining with R/Python
- Statistical Quality Control
- Stochastic Models in Finance
- Survival Analysis
- Time Series Analysis
- Sampling Theory and Applications

List of Open Elective (OE) for first two semesters

- 1) Statistical Methods
- 2) Business Statistics
- 3) Applied statistics
- 4) Biostatistics

Curriculum Structure for the Undergraduate Degree Program

B.Sc.

Total Credits for the Program: 176 Name of the Degree Program : B. Sc. Starting year of implementation: 2021-22 Discipline/Subject: Statistics(Major)

Program Articulation Matrix:

This matrix lists only the core courses. Core courses are essential to earn the degree in that discipline/subject. They include courses such as theory, laboratory, project, internships etc. Elective courses may be listed separately

Sem	Title /Name	Program	Pre-requisite	Pedagogy##	Assessment\$
ester	of the course	outcomes that	course(s)		
		the course			
		addresses (not			
		more than 3			
		per course)			
1	Descriptive	PO1,PO2,PO8	Mathematics	1. The course is taught	The assessment is
	Statistics		of 12 th level	using traditional chalk	done using
				and talk method using	continuous
				examples and exercises	written test open
				2 Students are	book examination
				encouraged to use	viva-voce seminars
				resources available on	and group
				open sources.	discussions.
1	Practical	PO5, PO6	Mathematics	The course is taught	Assessment of
		,	of 12 th level	using Excel software	learning through
				and/or manually to carry	experiments
				out descriptive statistical	••••P•••••••
				analysis.	
2	Probability and	PO7,PO9,PO10	Mathematics	1. The course is taught	The assessment is
	Distributions		of 12 th level	using traditional chalk	done using
				and talk method using	continuous
				problem solving through	assessment through
				examples and exercises.	written test, open
				2. Students are	book examination,
				encouraged to use	viva-voce, seminars,
				resources available on	and group
				open sources	discussions.
2	Practical	PO5,PO6	Mathematics	The course is taught	Assessment of
			of 12 th level	using R programming	learning through
				software and/or	experiments
				manually to carry out	
				descriptive statistical	
				analysis	

Pedagogy for student engagement is predominantly lectures. However, other pedagogies enhancing better student engagement to be recommended for each course. The list includes active learning/ course

projects/ problem or project based learning/ case studies/self study like seminar, term paper or MOOC \$ Every course needs to include assessment for higher order thinking skills (Applying/ Analyzing/ Evaluating/ Creating). However, this column may contain alternate assessment methods that help formative assessment (i.e. assessment for learning).

Course Pre-requisite(s): II PUC with Mathematics

Course Outcomes (COs)

At the end of the course the student should be able to:

- 1. Acquire knowledge of introductory statistics, its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.
- 2. Get knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc.
- 3. Perceive the knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.
- 4. Learn different of types of data reflecting independence and association between two or more attributes.
- 5. Develop ability to critically assess a standard report having graphics, probability statements.
- Conceptualize the probabilities of events including frequentist and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem,
- 7. Get knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments,
- 8. Learn knowledge of important discrete and continuous distributions such as Binomial, Poisson, Normal distributions.
- 9. Acquire knowledge on R-programming in the descriptive statistics and probability models.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
1. Knowledge of introductory statistics, its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.	X	X			х	Х						
2.Knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc.			X	X	х	Х				Х	Х	
3. Knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.				X	х	Х		Х		Х	Х	
4.Knowledge of types of data reflecting independence and association between two or more attributes				X	X	X				Х		Х
5. Develop ability to critically assess a standard report having graphics, probability statements.					X	X	X		X			
6. Knowledge to conceptualize the probabilities of events including frequentist and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem.					Х	х			Х	Х		
7. Knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments.					Х	X			Х	Х		
8. Knowledge of important discrete and continuous distributions such as Binomial, Poisson, Normal, distributions.					X	X			X	X		
9. Knowledge on R-programming in the descriptive statistics and probability models.					X	X			X	X		

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. 'X' in the intersection cell indicates that particular course outcome addresses that particular program outcome.

BSc Semester 1

Course Title: B.Sc	
Total Contact Hours: 56	Course Credits:04
Formative Assessment Marks: 30	Duration of ESA/Exam: 3hours
Model Syllabus Authors: State level NEP-model curriculum setting committee members-Statistics	Summative Assessment Marks: 70

Title of the Course: Descriptive Statistics

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of practical hours/semester					
4	56	2	52					
Content of Theory Course 1								
Unit – 1 : Introduction t	o Statistics			13 Hrs				
Statistics: Definition and scope. Concepts of statistical population and sample (SRS, Stratified, Systematic and Cluster sampling methods Definitions only). Data: quantitative and qualitative, cross sectional and time-series, discrete and continuous. Scales of measurement: nominal, ordinal, interval and ratio. Presentation of data: tabular and graphical. Frequency distributions, cumulative frequency distributions and their graphical representations. Stem and leaf displays. (Ref. 4)								
Unit – 2: Univariate Dat	ta Analysis			18 Hrs				
Measures of Central Tendency: Mean, weighted mean, trimmed mean, Median, Mode, Geometric and harmonic means, properties, merits and limitations, relation between these measures. Measures of Dispersion: Range, Quartile deviation, Mean deviation, Standard deviation and their relative measures. Gini's Coefficient, Lorenz Curve. Moments, Skewness and Kurtosis. Quantiles and measures based on them. Box Plot, Outliers, Chebyshey's inequality, normal data sets. (Ref 10)								
Unit – 3: Bivariate Dat	a Analysis			15 Hrs				
Bivariate Data, Scatter plot, Correlation, Karl Pearson's correlation coefficient, Rank correlation – Spearman's and Kendall's measures. Concept of errors, Principle of least squares, fitting of polynomial and exponential curves. Simple linear regression and its properties. Fitting of linear regression line and coefficient of determination. (Ref. 10)								
Unit –4: Multivariate D	ata Analysis			10 Hrs				
Analysis of Categorical measures of association Multivariate Data Visua multiple and partial corre	Data: Contingency ta - odds ratio, Pearson lization, mean vector elation coefficients. Re	able, independence an 's and Yule's measure and dispersion matrix, esidual error variance. (d association of attributes, e, Multivariate Frequencies, Multiple linear regression, (Ref. 7)					

References

- 1. Agresti, A. (2010): Analysis of Ordinal Categorical Data, 2nd Edition, Wiley.
- 2. Anderson T.W. and Jeremy D. Finn (1996). The New Statistical Analysis of Data, Springer
- 3. Freedman, D., Pisani, R. and Purves, R. (2014), Statistics, 4th Edition, W. W. Norton & Company.
- 4. Gupta, S.C. (2018), Fundamental of Statistics, Himalaya Publishing House, 7th Edition.
- 5. Gupta S.C. and V.K. Kapoor (2020), Fundamental of Mathematical Statistics, Sultan Chand and Co. 12th Edition.
- 6. Hogg, R. V. McKean J. W. and Craig, A. T. (2012), Introduction to Mathematical Statistics, Pearson 7th Edition.
- 7. Joao Mendes Moreira, Andre C P L F de Carvalho, Tomas Horvath (2018), General Introduction to Data Analytics, Wiley.
- 8. Johnson, R.A. and Bhattacharyya, G.K. (2006), Statistics: Principles and methods. 5th Edition, John Wiley & Sons, New York.
- 9. Medhi, J. (2005), Statistical Methods, New Age International.
- Ross, S.M. (2014), Introduction to Probability and Statistics for Engineers and Scientists, 5th Edition, Academic Press.
- 11. Tukey, J.W. (1977), Exploratory Data Analysis, Addison-Wesley Publishing Co.

Pedagogy

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment: Total 30 marks							
Assessment Occasion/ type	Weightage in Marks						
Internal Test 1	1/3						
Internal Test 2	1/3						
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3						
Total	01						

14-09-2021 Date

Course Co-ordinator

Subject Committee Chairperson

Content of Practical Course 1

(Computing all the practicals manually and using Excel)

- 1. Presentation of data by frequency tables, diagrams and graphs, stem and leaf, partition values.
- 2. Arithmetic Mean (AM), geometric mean, harmonic mean, weighted AM, trimmed mean, corrected mean.
- 3. Mode, median, partition values.
- 4. Absolute and relative measures of dispersion, Box plots.
- 5. Problems on moments, skewness and kurtosis.
- 6. Fitting of curves by least squares method.
- 7. Product moment correlation coefficient and rank correlation.
- 8. Regression of two variables.
- 9. Multivariate Descriptive statistics, mean Vector, dispersion matrix correlation matrix, Partial and Multiple correlation.
- 10. Problems on Association of attributes.

B.Sc. Semester 2

Course Title: B.Sc.						
Total Contact Hours: 56	Course Credits:04					
Formative Assessment Marks: 30	Duration of ESA/Exam: 3hours					
Model Syllabus Authors: State level NEP-model curriculum setting committee members-Statistics	Summative Assessment Marks: 70					

Course Pre-requisite(s): II PUC with Mathematics

Title of the Course: Probability and Distributions

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of actical CreditsNumber of practical hours/semester					
4	56	2	52					
	Content	of Theory Course 2		56Hrs				
Unit –1 : Probability								
Random experiment, sample space and events, algebra of events. Definitions of Probability- Classical, statistical, subjective and axiomatic approaches – illustrations and applications, Addition rule, Conditional probability, independence of events and multiplication rule, Total probability rule. Bayes theorem- applications.								
Unit –2:Random Variables And Mathematical Expectation-(One Dimension)								
Definitions of discrete and continuous random variables, Distribution function, probability mass and density functions – properties and illustrations, Expectation of a random variable and rules of expectation and related results, Moments and moment generating function – properties and uses.								
Unit –3 : Standard Distributions								
Bernoulli, Binomia relations for prob distribution and its	al, Poisson, distributior abilities and moments properties.	ns– mean, variance, m of Binomial and Po	oments and m. g. f. recursive bisson distributions, Normal					

Unit –4: Data Analysis Using R	14 Hrs
Introduction to R: Installation, command line environment, overview of capabilities, brief	
mention of open source philosophy. R as a calculator: The four basic arithmetic operations. Use	
of parentheses nesting up to arbitrary level. The power operation. Evaluation of simple	
expressions. Quotient and remainder operations for integers. Standard functions, e.g., sin, cos,	
exp, log. The different types of numbers in R: Division by zero leading to Inf or -Inf. NaN. NA.	
No need to go into details. Variables. Creating a vector using c(), seq() and colon operator. How	
functions map over vectors. Functions to summarize a vector: sum, mean, sd, median etc.	
Extracting a subset from the vector (by index, by property). R as a graphing calculator:	
Introduction to plotting. Plot(), lines(), abline(). No details about the graphics parameters except	
colour and line width. Barplot, Pie chart and Histogram. Box plot. Scatter plot and simple linear	
regression using lm(y~x). Problems on discrete and continuous probability distributions.	

References

- 1. Dudewitz. E.J. and Mishra. S. N. (1998), Modern Mathematical Statistics. John Wiley.
- 2. Goon A.M., Gupta M.K., Das Gupta .B. (1991), Fundamentals of Statistics, Vol. I, World Press, Calcutta.
- 3. Gupta. S.C and V.K. Kapoor (2020), Fundamentals of Mathematical Statistics, Sultan Chand and Co, 12th Edition.
- 4. Hogg, R.V., Tanis, E.A. and Rao J.M. (2009), Probability and Statistical Inference, Seventh Edition, Pearson Education, New Delhi.
- 5. Mood, A.M., Graybill, F.A. and Boes, D.C. (2007), Introduction to the Theory of Statistics, 3rd Edition. (Reprint), Tata McGraw-Hill Pub. Co. Ltd.
- 6. Ross, S. (2002), A First Course in Probability, Prentice Hall.
- 7. Sudha G. Purohit, Sharad D. Gore, Shailaja R Deshmukh,(2009), Statistics Using R, Narosa Publishing House.
- 8. R for beginners by Emmanuel Paradis (freely available at <u>https://cran.r-</u> project.org/doc/contrib/Paradisrdebuts_en.pdf)

Pedagogy

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment: 30 marks							
Assessment Occasion/ type	Weightage in Marks						
Internal Test 1	1/3						
Internal Test 2	1/3						
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3						
Total	01						

14-09-2021 Date

Course Co-ordinator

Subject Committee Chairperson

Content of Practical Course 2: List of Experiments to be conducted

(Computing all the practicals manually and using Excel/R)

- 1. Two exercise on Descriptive statistics (Presentations, Summarizations, correlations, regression and Graphs using R)
- 2. Computing probability: using addition and multiplication theorems.
- 3. Conditional probability and Bayes' theorem.
- 4. Problems on pmf, expectation, variance, quantiles, skewness, kurtosis (Discrete Case).
- 5. Problems on pdf, expectation, variance, quantiles, skewness, kurtosis (Continuous case).
- 6. Problems on discrete probability distributions(Binomial and Poisson)
- 7. Problems on Normal probability distributions
- 8. Computation of moments and Moment generating functions (Discrete and Continuous Case).
- 9. Fitting of distributions Binomial, Poisson, Normal distributions.
- 10. Generation of random samples. (Binomial, Poisson, Normal)

List of Open Electives (OE)

- 1. Statistical Methods
- 2. Business Statistics
- 3. Applied statistics
- 4. Biostatistics

1. Statistical Methods (Open Elective)

Course Objectives

- 1. This is an open elective course for other than statistics students.
- 2. The students will learn the elements of descriptive statistics, probability, statistical methods such as tests of hypotheses, correlation and regression.

Course Outcomes

Students will be able to

CO1. Acquire knowledge of statistical methods.

- CO2. Identify types of data and visualization, analysis and interpretation.
- CO3. Know about elementary probability and probability models.
- CO4. Employ suitable test procedures for given data set.

Pedagogy

The course is taught using traditional chalk and talk method using problem solving through examples and exercises. Students are encouraged to use resources available on open sources.

Contents

Unit 1: Introduction

Definition and scope of Statistics. Data: quantitative and qualitative, attributes, variables, scales of measurement - nominal, ordinal, interval and ratio. Presentation: tabular and graphic, including histogram and ogives. Concepts of statistical population and sample. Sampling from finite population - Simple random sampling, Stratified and systematic random sampling procedures (definitions and methods only). Concepts of sampling and non-sampling errors.

Unit 2: Univariate and Bivariate Data Analysis

Measures of Central Tendency: mathematical and positional. Measures of Dispersion: range, quartile deviation, mean deviation, standard deviation, coefficient of variation, moments, skewness and kurtosis.

Bivariate data, scatter diagram, Correlation, Karl-Pearson's correlation coefficient, Rank

10 Hours

10 Hours

correlation. Simple linear regression, principle of least squares and fitting of polynomials and exponential curves.

Unit 3: Probability and Distributions

Probability: Random experiment, trial, sample space, events-mutually exclusive and exhaustive events. Classical, statistical and axiomatic definitions of probability, addition and multiplication theorems, Bayes theorem (only statements). Discrete and continuous random variables, probability mass and density functions, distribution functions, expectation of a random variable.

Standard univariate distributions: Binomial, Poisson and Normal distributions (Elementary properties and applications only).

Unit 4: Sampling Distributions and Testing of Hypothesis 10 Hours

Distribution of sample mean from a normal population, Chi-square, t and F distributions (No derivations) and their applications.

Statistical Hypothesis – null and alternative hypothesis, simple and composite hypothesis. Type I and Type II errors, level of significance, critical region, P-value and its interpretation.

Test for single mean, equality of two means, single variance, and equality of two variances for normal populations.

References

- 1. Daniel, W. W. (2007 Biostatistics A Foundation for Analysis in the Health Sciences, Wiley
- 2. T.W. Anderson and Jeremy D. Finn(1996). The New Statistical Analysis of Data, Springer.
- 3. Mukhyopadyaya P(1999). Applied Statistics, New Central book Agency, Calcutta.
- 4. Ross, S.M.(2014) Introduction to Probability and Statistics For Engineers and Scientists.
- 5. Cochran, W G (1984): Sampling Techniques, Wiley Eastern, New Delhi.

12 Hours

2. Business Statistics (Open Elective)

Course Objectives

- 1. Provide an introduction to basics of statistics within a financial context.
- 2. To enable students to use statistical techniques for analysis and interpretation of business data.

Course Outcomes (CO)

Upon the completion of this course students should be able to:

CO1.Frame and formulate management decision problems.

CO2. Understand the basic concepts underlying quantitative analysis.

CO3.Use sound judgment in the applications of quantitative methods to management decisions.

Pedagogy

1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.

2. Students are encouraged to use resources available on open sources.

Contents

Unit 1: Statistical Data and Descriptive Statistics

12 Hours

Nature and Classification of data: univariate, bivariate and multivariate data; time-series and crosssectional data. Measures of Central Tendency: mathematical averages including arithmetic mean geometric mean and harmonic mean, properties and applications. Positional Averages Mode and Median (and other partition values including quartiles, deciles, and percentiles). Measures of Variation: absolute and relative. Range, quartile deviation, mean deviation, standard deviation, and their coefficients, Properties of standard deviation/variance Skewness: Meaning, Measurement using Karl Pearson and Bowley's measures; Concept of Kurtosis.

Unit 2: Simple Correlation and Regression Analysis

Correlation Analysis: Meaning of Correlation: simple, multiple and partial; linear and non-linear, Correlation and Causation, Scatter diagram, Pearson's co-efficient of correlation; calculation and properties (Proof not required). Correlation and Probable error; Rank Correlation.

Regression Analysis: Principle of least squares and regression lines, Regression equations and estimation; Properties of regression coefficients; Relationship between Correlation and Regression coefficients; Standard Error of Estimate and its use in interpreting the results.

Unit 3: Index Numbers

10 Hours

Definition, Problems involved in the construction of index numbers, methods of constructing index numbers of prices and quantities, simple aggregate and price relatives method, weighted aggregate and weighted average of relatives method, important types of weighted index numbers: Laspeyre's, Paasche's, Bowley's, Marshall- Edgeworth, Fisher's, method of obtaining price and quantity index numbers, tests consistency of index numbers, time reversal test and factor reversal test for index numbers, Uses and limitations of index numbers. Consumer price index number: Problems involved in the construction of cost of living index number, advantages and disadvantages, Aggregative expenditure method and Family budget method for the construction of consumer price index numbers. Definition and measurement of Inflation rate – CPI and GNP Deflator.

Unit 4: Time Series Analysis

Introduction, definition and components of Time series, illustrations, Additive, Multiplicative and mixed models, analysis of time series, methods of studying time series: Secular trend, method of moving averages, least squares method – linear, quadratic, exponential trend fittings to the data. Seasonal variation - definition, illustrations, measurements, simple average method, ratio to moving average method, ratio of trend method, link relatives method, Cyclical variation-definition, distinction from seasonal variation, Irregular variation- definition, illustrations.

56

10 Hours

10 Hours

References

- 1. Levin, Richard, David S. Rubin, Sanjay Rastogi, and H M Siddiqui. Statistics for Management. 7th ed., Pearson Education.
- David M. Levine, Mark L. Berenson, Timothy C. Krehbiel, P. K.Viswanathan, Business Statistics: A First Course, Pearson Education.
- 3. Siegel Andrew F. Practical Business Statistics. McGraw Hill Education.
- 4. Gupta, S.P., and Archana Agarwal. Business Statistics, Sultan Chand and Sons, New Delhi.
- 5. Vohra N. D., Business Statistics, McGraw Hill Education.
- 6. Murray R Spiegel, Larry J. Stephens, Narinder Kumar. Statistics (Schaum's Outline Series), Mc-Graw Hill Education.
- 7. Gupta, S.C. Fundamentals of Statistics. Himalaya Publishing House.
- Anderson, Sweeney, and Williams, Statistics for Students of Economics and Business, Cengage Learning.

3. Applied Statistics (Open Elective)

Course Objectives

- 1. To enable the students to use statistical tools in finance, industries, population studies and health sciences.
- 2. To acquire knowledge about sampling methods for surveys.

Course Outcomes (CO)

Upon successful completion of this course, the student will be able to:

- CO1.Understand the Price and Quantity Index numbers and their different measures, understand the applicability of cost of living Index number.
- CO2.Know the components and Need for Time series, understand the different methods of studying trend and Seasonal Index.
- CO3. Study the concept of vital statistics, sources of data, different measures of Fertility and Mortality, Understand the Growth rates- GRR and NRR and their interpretations.
- CO4. Know the concept of Population, Sample, Sampling unit, sampling design, sampling frame, sampling scheme, need for sampling, apply the different sampling methods for designing and selecting a sample from a population, explain sampling and non-sampling errors.
- CO5. Describe the philosophy of statistical quality control tools as well as their usefulness in industry and hence develop quality control tools in a given situation.

Pedagogy

The course is taught using traditional chalk and talk method using problem solving through examples and exercises. Students are encouraged to use resources available on open sources.

Contents

Unit 1: Economic Statistics

Index numbers: Definition, Criteria for a good index number, different types of index numbers.

12 Hours

Construction of index numbers of prices and quantities, consumer price index number. Uses and limitations of index numbers. Consumer price index number: construction of consumer price index numbers. Applications of consumer price index numbers

Time Series Analysis: Components of time series, Decomposition of time series- Additive and multiplicative model with their merits and demerits, Illustrations of time series. Measurement of trend by method of free-hand curve, method of semi-averages and method of least squares (linear). Measurement of seasonal variations by method of ratio to trend.

Unit 2: Vital Statistics

10 Hours

Sources of demographic data, errors in data.

Measurement of mortality: crude death rate, specific death rates, and standardized death rates, infant mortality rate, maternal mortality rate, neo natal mortality rates, merits and demerits and comparisons of various mortality rates.

Measurement of Fertility and Reproduction: Fecundity, fertility, measurement of fertility, crude birth rate, general fertility rate, age specific fertility rate and total fertility rates, merits and demerits of each measure of fertility, comparative study of these measures of fertility, Growth rates: Gross reproduction rate and Net reproduction rates.

Unit 3: Sampling Theory

Population and Sample. Need for sampling, Complete Enumeration versus Sample Surveys, Merits and Demerits, Non – Probability and Probability Sampling, Need and illustrations. Use of random numbers, Principal steps in sample survey. Requisites of a good questionnaire. Pilot surveys, Sampling and non – sampling errors, Description of SRS, simple random sampling with and without replacement procedures, Merits and demerits of Simple random sampling.

Need for stratification, stratifying factors, Merits and demerits of stratified random sampling. Systematic random sampling procedure of obtaining sample, Merits and demerits of systematic random sampling.

Unit 4: Statistical Quality Control

Concept of quality and its management

Causes of variations in quality: chance and assignable. General theory of control charts, Control

10 Hours

10 Hours

charts for variables: X- bar and R-charts. Control charts for attributes: p and c-charts. Acceptance Sampling Plans (Product control): Basic terminologies: AQL, LTPD, AOQ, AOQL, ASN, OC curve, producer's risk, and consumer's risk. Single sampling plan, double sampling plan.

References

- 1. J. Medhi (1992) Statistical Methods. New Age International (P) Ltd. New Delhi.
- 2. M.N. Das (1993) Statistical Methods and Concepts. Wiley Eastern Ltd.
- Irwin Miller, John E Freund and Richard A Johnson (1992) Probability and Statistics for Engineers. Prentice Hall of India New Delhi.
- 4. D.C. Montgomery (1996) Introduction to Statistical Quality Control.
- 5. Cochran, W G. (1984) Sampling Techniques, Wiley Eastern, New Delhi.
- 6. Mukhopadhaya P (1998) Theory and Methods of Survey Sampling. Prentice Hall of India.
- 7. Mukhopadhyay P. (2011): Applied Statistics, 2nd ed. Revised reprint, Books and Allied
- 8. Kendall M.G. (1976): Time Series, Charles Griffin.
- 9. Chatfield C. (1980): The Analysis of Time Series An Introduction, Chapman & Hall.

4. Biostatistics (Open Elective)

Course Objectives

- 1. To enable the students to identify the variables of biological studies and explore the tools of classification and presentation.
- 2. To study the probability notion, models and their applications in the study of biological phenomenon.
- 3. To acquire knowledge on sampling distribution and testing of hypotheses.

Course Learning Outcomes

After studying the course, the student will be able to apply statistical tools and techniques in data analysis of biological sciences.

Pedagogy

The course is taught using traditional chalk and talk method using problem solving through examples and exercises. Students are encouraged to use resources available on open sources.

Contents

Unit 1: Introduction to Bio-Statistics

Definition and scope of Statistics. Scales of Measurement: nominal, ordinal, interval and ratio. Collection, classification and tabulation of data, construction of frequency table for grouped and ungrouped data, graphical representation of data by Histogram, Polygon, Ogive curves and Pie diagram.

Unit 2: Descriptive Statistics

Measures of Central Tendency: Arithmetic mean, Median and Mode- definition, properties, merits and limitations. Measures of Dispersion: Range, Standard deviation and Coefficient of Variation. Correlation and Regression Analysis: Relation between two variables, definition of correlation, types of correlation, Scatter diagram, Karl-Pearson's coefficient of linear correlation and its properties, Spearman's Rank Correlation coefficient. Regression- Simple linear regression, fitting

10 hours

12 hours

of regression equations by method of Least Squares, linear regression coefficients and their properties.

Unit 3: Probability and Distributions

Probability: Random experiment, sample space, events-mutually exclusive and exhaustive events. Classical, statistical and axiomatic definitions of probability, addition and multiplication theorems, Bayes' theorem (only statements).

Discrete and continuous random variables, probability mass and density functions, distribution functions, expectation of a random variable.

Standard univariate distributions: Binomial, Poisson and Normal distributions (Elementary properties and applications only).

Unit 4: Sampling Distributions and Statistical Inference

Concepts of random sample and statistic, distribution of sample mean from a normal population, Chi-square, t and F distributions (No derivations) and their applications. Estimation of population mean, population standard deviation and population proportion from the sample counter parts.

Statistical Hypothesis – null and alternative hypothesis, simple and composite hypothesis. Type I and Type II errors, size, level of significance, power test, critical region, P-value and its interpretation. Test for single mean, equality of two means, single variance, equality of two variances for normal Populations, Test for proportions.

References

- 1. Dutta, N. K. (2004), Fundamentals of Biostatistics, Kanishka Publishers.
- 2. Gurumani N. (2005), An Introduction to Biostatistics, MJP Publishers.
- 3. Daniel, W. W. (2007), Biostatistics A Foundation for Analysis in the Health Sciences, Wiley
- 4. Rao, K. V. (2007), Biostatistics A Manual of Statistical Methods for use in Health Nutrition And Anthropology
- 5. Pagano, M. and Gauvreau, K. (2007), Principles of Biostatistics.
- 6. Rosner Bernard(2010), Fundamentals of Biostatistics, 6th Edition, Duxbury.

10 Hours

10 hours

Model Program Structures for the Under-Graduate Programs in Universities and Colleges of Karnataka

Bachelor of Arts (Basic/Hons.)

With Applied Statistics as Minor without practicals & other course as Major without practicals

And

Bachelor of Arts (Basic/ Hons.)

With Applied Statistics as Minor without practicals & other course as Major with practicals Name of the Degree Program: B.A Discipline Core: Applied Statistics Total Credits for the Program: 136(till 6th semesters) Starting year of implementation: 2021-22

Program Outcomes

By the end of the program the students will be able to:

- 1. Acquire fundamental/systematic or coherent understanding of the academic field of Statistics and its different learning areas and applications.
- 2. Develop and demonstrate an ability to understand major concepts in various disciplines of Statistics and its applications.
- 3. Demonstrate the ability to use skills in Statistics and different practicing areas for formulating and tackling Statistics related problems and identifying and applying appropriate principles and methodologies to solve a wide range of problems associated with Statistics of various studies.
- Understand procedural knowledge that creates different types of professionals related to subject area of Statistics, including professionals engaged in government/public service and private sectors.
- 5. Plan and execute Statistical experiments or investigations, analyze and interpret data/information collected using appropriate methods, including the use of appropriate statistical software including programming languages, and report accurately the findings of the experiment/investigations.
- 6. Have a knowledge regarding use of data analytics tools like Excel and R-programming.
- 7. Develop an ability to critically assess a standard report having graphics, probability statements.
- 8. Analyze, interpret the data and hence help policy makers to take a proper decision.
- Recognize the importance of statistical modelling and computing, and the role of approximation and statistical approaches to analyze the real problems of different disciplines using various statistical tools.
- 10. Demonstrate relevant generic skills and global competence such as
 - (i) Problem-solving skills that are required to solve different types of Statistics related

problems with well-defined solutions, and tackle open-ended problems, that belong to the disciplinary-area boundaries;

- (ii) Investigative skills, including skills of independent thinking of Statistics-related issues and problems;
- (iii) Communication skills involving the ability to listen carefully, to read texts and reference material analytically and to present information in a concise manner to different groups/audiences of technical or popular nature;
- (iv)Analytical skills involving paying attention to details and ability to construct logical Arguments using correct technical language related to Statistics and ability to translate them with popular language when needed;
- (v) ICT skills;

(vi)Personal skills such as the ability to work both independently and in a group.

11. Undertake research projects by using research skills- preparation of questionnaire, conducting national sample survey, research projects using sample survey, sampling techniques.

12. Understand and apply principles of least squares to fit a model to the given data, study the association between the variables, applications of Probability Theory and Probability Distributions.

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	30	70
Practical	Not applicable	Not applicable
Projects	Not applicable	Not applicable
Experiential Learning (Internships etc.)	Not applicable	Not applicable

Assessment

65

Model Program Structures for the Under-Graduate Programs in Universities and Colleges in Karnataka Bachelor of Arts (Basic/Hons.)

With Applied Statistics as Minor without practicals &other course as Major without practicals

Sem.	Discipline Core (DSC) (Credits)	Discipline Elective(DSE) /	/ Ability Enhancement Compulsory		Skill Enhancemen	t Courses (SEC)	Total
	(L+T+P)	Open Elective (OE) (Credits) (I +T+P)	Courses (AECC), Lai	nguages (Credits)	Skill based (Credits)	Value based (Credits)	Credits
					(L+T+P)	(L+T+P)	
Ι	Discipline A1(3), A2(3)	OE-1 (3)	L1-1 (3), L2-1(3)		SEC-1: Digital		23
	Applied Statistics B1(3), B2(3)		(3+1+0 each)		Fluency (2) (1+0+2)		
II	Discipline A3(3), A4(3)	OE-2 (3)	L1-2(3), L2-2 (3)	Environmental		Health & Wellness/	25
	Applied Statistics B3(3), B4(3)		(3+1+0 each)	Studies (2)		Social & Emotional	
						Learning (2) (1+0+2)	
	·	•	Exit option with Cer	tificate (48 credits)		·	•
III	Discipline A5(3), A6(3)	OE-3 (3)	L1-3 (3), L2-3(3)		SEC-2:Artificial Intel-		23
	Applied Statistics B5(3), B6(3)		(3+1+0 each)		ligence (2)(1+0+2)		
IV	Discipline A7(3), A8(3)	OE-4 (3)	L1-4 (3), L2-4(3)	Constitution of		Sports/NCC/NSS etc.	25
	Applied Statistics B7(3), B8(3)		(3+1+0 each)	India (2)		(2)(1+0+2)	
	•	Exit option with Diploma	(96 credits)/ Choose any	y one Discipline as I	Major, the other as the Minor		I
V	Discipline A 9(4)	DSE A-1 (3)			SEC-3: Cyber Security (2)	Ethics & Self Awareness	20
	Discipline A10(4)	Vocational-1 (3)			(1+0+2)	(2) (1+0+2)	
	Applied Statistics B 9(4)						
VI	Discipline A11(4)	DSE A-2 (3)			SEC-4: Professional/		20
	Discipline A12(4)	Vocational-2 (3)			Societal		
	Applied Statistics B10(4)				Communication (2)		
		Exit option with Bachelo	r of Arts, B.A. / Bachelo	or of Science, B. Sc.	. Basic Degree (136 credits)		1
VII	Discipline A-13(4)	DSE A-3 (3)	,				20
	Discipline A-14(4)	DSE A-4 (3)					
	Discipline A-15(3)	Res.Methodology (3)					
VIII	Discipline A-16(4)	DSE A-5 (3)					20
	Discipline A-17(4)	Research Project (6)*					
	Discipline A-18(3)						
	Award of	Bachelor of Arts Honours B	A. (Hons.)/ Bachelor of	f Science Honours	B.Sc. (Hons) degree in a disci	pline etc. (176 credits)	I
	110410 01					(1/0 erea ns)	

*In lieu of the research Project, two additional elective papers/ Internship may be offered.

Model Program Structures for the Under-Graduate Programs in Universities and Colleges in Karnataka Bachelor of Arts (Basic/ Hons.)

With Applied Statistics as Minor without practicals & other course as Major with practicals

Sem.	Discipline Core (DSC) (Credits)	Discipline Elective(DSE) /	Ability Enhanceme	nt Compulsory	Skill Enhanceme	Total	
	(L+T+P)	Open Elective (OE) (Credits) (L+T+P)	Courses (AECC), L (Credits) (L+T+P)	anguages	Skill based (Credits) (L+T+P)	Value based (Credits) (L+T+P)	Credits
Ι	Discipline A1(4+2) Applied Statistics B1(3), B2(3)	OE-1 (3)	L1-1 (3), L2-1(3) (3+1+0 each)		SEC-1: Digital Fluency (2) (1+0+2)		23
II	Discipline A2(4+2) Applied Statistics B3(3), B4(3)	OE-2 (3)	L1-2(3), L2-2 (3) (3+1+0 each)	Environmental Studies (2)		Health & Wellness/ Social & Emotional Learning (2) (1+0+2)	25
		Exit o	ption with Certifica	te (48 credits)			
III	Discipline A3(4+2) Applied Statistics B5(3), B6(3)	OE-3 (3)	L1-3 (3), L2-3(3) (3+1+0 each)		SEC-2:Artificial Intel- ligence (2)(1+0+2)		23
IV	Discipline A4(4+2) Applied Statistics B7(3), B8(3)	OE-4 (3)	L1-4 (3), L2-4(3) (3+1+0 each)	Constitution of India (2)		Sports/NCC/NSS etc. (2) (1+0+2)	25
	Exit optic	on with Diploma (96 credit	s)/ Choose any one	Discipline as Ma	jor, the other as the Mine	or	
V	Discipline A 5(3), A6(3) Discipline A 7(2)(P) Applied Statistics B 9(4)	DSE A-1 (3) Vocational-1 (3)			SEC-3: Cyber Security (2) (1+0+2)	Ethics & Self Aware- ness (2) (1+0+2)?	20
VI	Discipline A 8(3), A9(3) Discipline A10(2)(P) Applied Statistics B10(4)	DSE A-2 (3) Vocational-2 (3)			SEC-4: Professional/ Societal Communication (2)		20
	Exit opt	ion with Bachelor of Arts,	B.A. / Bachelor of	Science, B. Sc. B	asic Degree (136 credits))	
VII	Discipline A11(3), A12(3) Discipline A13(3) Discipline A14(2)(P)	DSE A-3 (3) DSE A-4 (3) Res.Methodology (3)					20
VIII	Discipline A15(3), A16(3) Discipline A17(3) Discipline A18(2)(P)	DSE A-5 (3) Research Project (6)*					20
	Award of Bachelor of Arts Honours,	B.A. (Hons.)/ Bachelor of	Science Honours,	B.Sc. (Hons) degr	ree in a discipline etc. (1)	76 credits)	

Summary of Discipline Specific Courses (DSC)							
Semester	Course Code	Title of the Paper					
	DSC B1	Descriptive Statistics – I					
Ι	DSC B2	Descriptive Statistics –II					
	DSC B3	Probability and Distributions					
Π	DSC B4	Statistics for Economics					
	DSC B5	Exact Sampling Distributions and Statistical Inference					
III	DSC B6	Sampling Techniques					
	DSC B7	ANOVA and Design of Experiments					
IV	DSC B8	Regression Analysis and Econometrics					
V	DSC B9	Statistical Quality Control					
VI	DSC B10	Operations Research					

Open Electives

Ι	OE 1	Statistics in Competitive Examinations
II	OE 2	Statistical Methods
III	OE 3	Business Statistics
IV	OE 4	Quantitative Aptitude

Curriculum Structure for the Undergraduate Degree Program B.A.

Total Credits for the Program: 176 Name of the Degree Program: B.A Starting year of implementation: 2021-22 Discipline/Subject: Applied Statistics

Program Articulation Matrix:

This matrix lists only the core courses. Core courses are essential to earn the degree in that discipline/subject. They include courses such as theory, laboratory, project, internships etc. Elective courses may be listed separately

Semes	Title /Name	Program outcomes	Pre-requisite	Pedagogy##	Assessment\$
ter	Of the course	that the course	course(s)		
		addresses (not more			
		than 3 per course)			
1	Descriptive Statistics-I	PO1,PO2,PO8	12 th level in any discipline	 The course is taught using traditional chalk and talk method using problem solving through examples and exercises. Students are encouraged to use resources available on open sources. 	The assessment is done using continuous assessment through written test, open book examination, viva-voce, seminars, and group discussions
1	Descriptive Statistics-II	PO5, PO6	12 th level in any discipline	 The course is taught using traditional chalk and talk method using problem solving through examples and exercises. Students are encouraged to use resources available on open sources 	
2	Statistics for Economics	PO3,PO8,PO10	12 th level in any discipline	 The course is taught using traditional chalk and talk method using problem solving through examples and exercises. Students are encouraged to use resources available on open sources 	The assessment is done using continuous assessment through written test, open book examination, viva-voce, seminars, and group discussions.

2	Probability	PO5,PO6	12 th level in	The course is taught	
	and		any discipline	using traditional chalk	
	Distributions		v 1	and talk method using	
				problem solving through	
				examples and exercises.	
				2. Students are	
				encouraged to use	
				resources available on	
				open sources	

Pedagogy for student engagement is predominantly lectures. However, other pedagogies enhancing better student engagement to be recommended for each course. The list includes active learning/ course projects/ problem or project based learning/ case studies/self study like seminar, term paper or MOOC \$ Every course needs to include assessment for higher order thinking skills (Applying/ Analyzing/ Evaluating/ Creating). However, this column may contain alternate assessment methods that help formative assessment (i.e. assessment for learning).

BA	
----	--

Semester 1

Course Title: B.A						
Total Contact Hours: 42	Course Credits:3					
Formative Assessment Marks: 30	Duration of ESA/Exam: 3hours					
Model Syllabus Authors: State level NEP-model curriculum setting committee members-Statistics	Summative Assessment Marks: 70					

Course Pre-requisite(s): II PUC in any discipline

Course Outcomes (COs)

At the end of the course the student should be able to:

- 1. Organize, manage and present data.
- 2. Analyze statistical data graphically using frequency distributions and cumulative frequency distributions.
- 3. Analyze statistical data using measures of central tendency, dispersion.
- 4. Understand Skewness and Kurtosis and their use in studying various characteristics of data.
- 5. Know concept of correlation, various correlation coefficients- Pearson's correlation coefficient, Spearman's rank correlation coefficient.
- 6. Carryout spatial analysis.
- 7. Understand the Price and Quantity Index numbers and their different measures, understand the applicability of cost of living Index number.
- 8. Know the components and Need for Time series, understand the different methods of studying trend and Seasonal Index.
- 9. Solve problems of economics concerns using demand analysis, supply functions, Gini's coefficient and Lorenz Curve.
- 10. Understand basic concepts, important theorems on probability and their use in solving problem.
- 11. Know random variable, mathematical expectation, and numerical problems on mathematical expectation.
- 12. Understand the most common discrete and continuous probability distributions and their real life applications.
- 13. Understand the nature of data and to perform appropriate analysis.

- 14. Carry out time series analysis and predict the future values of given trend.
- 15. Analyze the Seasonal Indies by using different methods.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
1. Organize, manage and present data.	Х	Х		Х								
2. Analyze statistical data graphically using frequency distributions and cumulative frequency distributions.	Х						Х					
3. Analyze statistical data using measures of central tendency, dispersion.				X				Х		Х		
4. Understand Skewness and Kurtosis and their use in studying various characteristics of data.			Х									
5. Know concept of correlation, various correlation coefficients- Pearson's correlation coefficient, Spearman's rank correlation coefficient.			X									
6. Carryout spatial analysis.							Х					
7. Understand the Price and Quantity Index numbers and their different measures, understand the applicability of cost of living Index number.									х	х		
8. Know the components and Need for Time series, understand the different methods of studying trend and Seasonal Index.	Х								Х	Х		
9. Solve problems of economics concerns using demand analysis, supply functions, Gini's coefficient and Lorenz Curve.									Х	Х		
10. Understand basic concepts, important theorems on probability and their use in solving problem.											Х	
11.Know random variable, mathematical expectation, and numerical problems on mathematical expectation.	Х										Х	
12. Understand the most common discrete and continuous probability distributions										X		

and their real life applications.							
13. Understand the nature of data and to perform appropriate analysis.						Х	Х
14. Carry out time series analysis and predict the future values of given trend.						Х	Х
15. Analyze the Seasonal Indies by using different methods.	X					X	Х

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark 'X' in the intersection cell if a course outcome addresses a particular program outcome.

BA Semester 1

Title of the Course: Applied statistics

Course 1: Descripti	ve Statistics-I	Course 2:Descriptive Statistics-II					
Number of	Number of lecture	Number of	Number of lecture				
Theory Credits	hours/semester	Theory Credits	hours/semester				
3	42	3	42				

Content of Course 1: Descriptive Statistics-I					
Unit – 1 :Introduction to Statistics and Basic Concepts	12 Hrs				
Meaning, origin, definition, functions, limitations and applications of Statistics. Primary and secondary data, different methods of collection of primary data with merits and demerits. Sources of secondary data. Classification: meaning, objectives, types of classifications-Chronological, Geographical, Qualitative and Quantitative classifications with illustrations. Definition of some important terms - class, class limits, class intervals, width of class interval, open-end classes, inclusive and exclusive classes. Formation of discrete and continuous frequency distributions. Tabulation: meaning, objectives and rules of tabulation, format of a statistical table and its parts. Types of table, examples of preparation of a blank table and tables with numerical information.					
Unit – 2 :Diagrammatic and Graphical representation of Data					
Diagrams: Meaning, importance of diagrams and general rules of construction of diagrams. Types of Diagrams – simple, multiple, component, percentage bar diagrams and pie diagrams with simple illustrations. Graphs: Types of Graphs – Histogram, frequency Polygon, frequency curve and Ogives, simple problems, location of mode, median and partition values from the graphs. Difference between diagrams and graphs.					

Unit – 3:Measures of Central Tendency	10 Hrs
Meaning of central tendency and essentials of a good measure of central tendency. Types of measures of central tendency: Arithmetic mean, Median, Mode, Geometric mean and Harmonic mean - definition, merits and demerits. Properties of arithmetic mean. Empirical relation between mean median and mode. Problems on both grouped and ungrouped data for all the measures. Partition values-definition and types of partition values: quartiles, deciles and percentiles. Problems on Quartiles for grouped ungrouped data only.	
Unit – 4:Measures of Dispersion	10 Hrs
Meaning and objectives of measures of dispersion. Essentials of a good measure of dispersion, absolute and relative measures of dispersion. Types of measures of dispersion- Range, Quartile deviation, Mean deviation and standard deviation with relative measures – definition, merits and demerits. Properties of Standard deviation, simple problems on ungrouped and grouped data. Skewness and Kurtosis: Skewness- Definition, objectives and types of skewness, explanation of positive and negative skewness with diagrams. Measures of skewness- Karl Pearson's coefficient of skewness and Bowley's coefficient of skewness. Simple problems. Kurtosis: Definition and types of kurtosis. Explanation of types of kurtosis with neat diagrams. Measure of skewness based on moments. Difference between skewness and kurtosis.	

References

- 1. Gani S. G., Sankhyshastra and Ganakayantra. Udaya Ravi Publications, Bijapur.
- 2. Gupta S. C. Fundamentals of Statistics, Himalaya Publishing House, Bombay
- 3. Mukhopadhaya, P. Applied Statistics, New Central Book Agency (P) Ltd., Calcutta
- 4. Gupta S P. and V K Kapoor Fundamentals of Mathematical Statistics, Sultan Chand, New Delhi

Pedagogy

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

Formative Assessment: 30 marks		
Assessment Occasion/ type	Weightage in Marks	
Internal Test 1	1/3	
Internal Test 2	1/3	
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3	
Total	01	

14-09-2021 Date

Course Co-ordinator

Subject Committee Chairperson

Content of Course 2:Descriptive Statistics-II		
Unit – 1 :Correlation		
Definition of relationship, Definition, Types of correlation, Methods of measuring correlation, Scatter diagram, Correlation Coefficient for quantitative data: Prof. Karl Pearson's coefficient of linear correlation, its properties, Correlation Coefficient for qualitative data: Spearman's rank correlation coefficient, its properties. Simple regression analysis- regression equations by method of least squares, linear regression coefficients and its properties. Angle between the regression lines.		
Unit – 2: Association of Attributes		
Meaning of association of attributes, definition of class of the first order and second order. Methods of studying association. Yule's coefficient of association and its interpretation. Determination of Yule's coefficient of association in case of two attributes.		
Unit – 3: Spatial Statistics		
History and introduction, spatial characterization, spatial dependence, spatial auto correlation, spatial association, spatial scaling, spatial sampling, errors in spatial analysis.		
Unit:4: Multivariate data Analysis		
Introduction: Yule's notations, distribution of two variables, distribution of three or more variables, primary and secondary subscripts, Plane of regression and its derivation, estimation of regression coefficients a and b in case of three variables, partial regression coefficient in terms of delta, Residual, properties of residuals, Standard deviation of residuals, Multiple and partial correlation, definition, derivation and their standard properties.		

References

- 1. Agresti, A. (2010): Analysis of Ordinal Categorical Data, 2nd Edition, Wiley.
- 2. Anderson T.W. and Jeremy D. Finn (1996). The New Statistical Analysis of Data, Springer
- Freedman, D., Pisani, R. and Purves, R. (2014), Statistics, 4th Edition, W. W. Norton & Company.
- 4. Gani S. G., Sankhyshastra and Ganakayantra. Udaya Ravi Publications, Bijapur.
- 5. Gupta S. C. Fundamentals of Statistics, Himalaya Publishing House, Bombay
- 6. Gupta S P. and V K Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand, New Delhi

Pedagogy

1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.

2. Students are encouraged to use resources available on open sources.

Formative Assessment: 30 marks	
Assessment Occasion/ type	Weightage in Marks
Internal Test 1	1/3
Internal Test 2	1/3
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3
Total	01

14-09-2021 Date

Course Co-ordinator

Subject Committee Chairperson
BA Semester 2

Title of the Course: Applied Statistics

Course 3: Statistics for Economics		Course 4: Probability and Distributions	
Number of	Number of lecture	Number of Theory	Number of lecture
Theory Credits	hours/semester	Credits	hours/semester
3	42	3	42

Content of Course 3: Statistics for Economics	
Unit – 1 :Supply and Demand	
How Markets Work, Markets and Welfare Markets and competition; determinants of individual demand/supply; demand/supply schedule and demand/supply curve; market versus individual demand/supply; shifts in the demand/supply curve, demand and supply together; how prices allocate resources; elasticity and its application; controls on prices; taxes and the costs of taxation; consumer surplus; producer surplus and the efficiency of the markets.	
Unit – 2:Measuring income inequality: Lorenz curve & Gini Coefficient	10 Hrs
Measuring income inequality: Pareto law of Distribution, Lorenz curve and Gini's Coefficient, Limitations and interpretations of GC.	
Unit – 3:Index numbers	
Definition, Problems involved in the construction of index numbers, methods of constructing index numbers of prices and quantities, simple aggregate and price relatives method, weighted aggregate and weighted average of relatives method, important types of weighted index numbers: Laspeyre's, Paasche's, Bowley's, Marshall- Edgeworth, Fisher's, method of obtaining price and quantity index numbers, tests consistency of index numbers, time reversal test, factor reversal test, and Circular test for index numbers, Uses and limitations of index numbers. Consumer price index number: Problems involved in the construction of cost of living index number, advantages and disadvantages, Aggregative expenditure method and Family budget method for the construction of consumer price index numbers. Applications of Cost of Living Index numbers. Definition and measurement of Inflation rate – CPI and GNP Deflator.	
Unit 4:Time Series Analysis	10 Hrs
Introduction, definition and components of Time series, illustrations, Additive, Multiplicative and mixed models, analysis of time series, methods of studying time series: Secular trend, method of moving averages, least squares method – linear, quadratic, exponential trend fittings to the data. Seasonal variation - definition, illustrations, measurements, simple average method, ratio to moving average method, ratio of trend method, link relatives method, Cyclical variation- definition, distinction from seasonal variation. Irregular variation- definition, illustrations,	

References

- 1. Gupta S. C. Fundamentals of Statistics, Himalaya Publishing House, Bombay
- 2. Mukhopadhaya, P. Applied Statistics, New Central Book Agency (P) Ltd., Calcutta
- 3. Gupta S P. and V K Kapoor Fundamentals of Mathematical Statistics, Sultan Chand, New Delhi.

Pedagogy

1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.

2. Students are encouraged to use resources available on open sources.

Formative Assessment: 30 marks		
Assessment Occasion/ type	Weightage in Marks	
Internal Test 1	1/3	
Internal Test 2	1/3	
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3	
Total	01	

14-09-2021 Date

Course Co-ordinator

Subject Committee Chairperson

Content of Course 4: Probability and Distributions	
Unit – 1 :Introduction to Probability	
Introduction to probability, Basic concepts: Random experiment, Sample space, Mutually exclusive, exhaustive, equally likely events, complimentary events, classical, statistical and axiomatic definition of probability, properties, Addition theorem of Probability and Definition of independent, dependent events, Conditional probability, Multiplication theorem of Probability without proof. Simple numerical problems.	

Unit – 2:Random Variable and Mathematical Expectation	
Definition of a random variable, discrete & continuous random variable, probability mass function, probability density function, distribution function. Definition of mathematical expectation, expected mean and variance of discrete random variable. Properties of Mathematical expectation. Statement of addition and multiplication theorem of expectation. Numerical problems on mathematical expectation.	
Unit – 3:Discrete Distributions	12 Hrs
Binomial Distribution: Definition of Binomial Distribution, mean and Variance of Binomial distribution, numerical problems on binomial distribution. Uses of binomial distribution. Fitting of Binomial distribution and obtaining expected probabilities. Simple problems. Poisson Distribution: Definition of Poisson distribution. Mean, Variance and its properties of Poisson variate. Uses of Poisson distribution. Simple problems on Poisson distribution. Computing probabilities for large n and small p for the given λ , finding λ for given two successive probabilities. Conditions for Poisson distribution as limiting form of Binomial distribution. Fitting of Poisson distribution.	
Unit – 4 : Normal Distribution	10 Hrs
Definition of normal variate. Application of Normal distribution Definition of standard normal variate, standard normal distribution and properties of normal curve. Conditions under which binomial distribution tend to normal distribution (Statement only). Finding probabilities and expected numbers when mean and variance are given quartile deviation, mean deviation and standard deviation and problems.	

References

- 1. Gupta S. C. Fundamentals of Statistics, Himalaya Publishing House, Bombay
- 2. Mukhopadhaya, P. Applied Statistics, New Central Book Agency (P) Ltd., Calcutta
- Gupta S P. and V K Kapoor Fundamentals of Mathematical Statistics, Sultan Chand, New Delhi.
- 4. Gani S. G., Sankhyshastra and Ganakayantra. Udaya Ravi Publications, Bijapur.

Pedagogy

1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.

2. Students are encouraged to use resources available on open sources.

Formative Assessment: 30 marks		
Assessment Occasion/ type	Weightage in Marks	
Internal Test 1	1/3	
Internal Test 1	1/3	
Assignment/Seminar (7 marks)+Attendance(3marks)	1/3	
Total	01	

14-09-2021 Date

Course Co-ordinator

Subject Committee Chairperson

List of Open Electives

- 1. Statistics in Competitive Examinations
- 2. Statistical Methods
- 3. Business Statistics
- 4. Quantitative Aptitude

1. Statistics in Competitive Examinations (Open Elective)

Course Objectives

To train the students to solve the problems of statistics that appear in most of the competitive exams conducted by Banking, State and Central Governments and other agencies.

Course Outcomes (CO)

After the successful completion of the course, the students will be able to develop the data analysis skills required for Competitive Examinations.

Pedagogy

1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.

2. Students are encouraged to use resources available on open sources.

Contents

Unit 1: Collection Classification and Presentation of Statistical Data (6 hours)

Primary and Secondary data, Methods of data collection; Tabulation of data; Graphs and charts; Frequency distributions; Diagrammatic presentation of frequency distributions.

Unit 2: Measures of Central Tendency and Dispersion (12 hours)

Meaning of central tendency and essentials of a good measure of central tendency. Types of measures of central tendency, Arithmetic mean, Median, Mode, Geometric mean and Harmonic mean - definition, merits and demerits. Properties of arithmetic mean. Empirical relation between mean median and mode. Problems on both grouped and ungrouped data for all the measures. Partition values-definition and types of partition values: quartiles, deciles and percentiles.

Problems on Quartiles for grouped ungrouped data only.

Meaning and objectives of measures of dispersion. Essentials of a good measure of dispersion, absolute and relative measures of dispersion. Types of measures of dispersion- Range, Quartile deviation, Mean deviation and standard deviation with relative measures – definition, merits and demerits. Properties of Standard deviation, simple problems on ungrouped and grouped data.

Unit 3: Aptitude Ability and Reasoning

Area, Banker's Discount, Surds and Indices, Ratio and Proportion, Simple Interest, Problems on Trains, Profit and Loss, Compound Interest.

Reasoning: Number series, Analogy, Classifications, Blood relations Coding-decoding, Puzzle test, Logical Venn diagram. Alphabet-test, Alpha-numerical sequence puzzle, Mathematical operations, Numbers, ranking & time sequence test, Logical sequence test, Arithmetical operations.

Unit 4: Introduction to Probability

Introduction to probability, Basic concepts: Random experiment, Sample space, Mutually exclusive, exhaustive, equally likely events, complimentary events, classical, statistical and axiomatic definition of probability, properties, Addition theorem of Probability and Definition of independent, dependent events, Conditional probability, Multiplication theorem of Probability

without proof. Simple numerical problems.

References

- 1. Freedman, D., Pisani, R. and Purves, R. (2014), Statistics, 4th Edition, W. W. Norton & Company.
- 2. Gupta S. C. Fundamentals of Statistics, Himalaya Publishing House, Bombay.
- 3. Gani S. G., Sankhyshastra and Ganakayantra. Udaya Ravi Publications, Bijapur.

(10 hours)

2. Statistical Methods (Open Elective)

Course Objectives

This is an open elective course for social science and life science students.

The students will learn the elements of descriptive statistics, probability, statistical methods such as tests of hypotheses, correlation and regression.

Course Outcomes (CO)

Students will be able to

CO1. Acquire the knowledge of statistical methods.

CO2.Identify types of data and visualization, analysis and interpretation.

CO3.Know about elementary probability and probability models.

CO4.Employ suitable test procedures for given data set.

Pedagogy

The course is taught using traditional chalk and talk method using problem solving through examples and exercises. Students are encouraged to use resources available on open sources.

Contents

Unit 1: Introduction

Definition and scope of Statistics. Data: quantitative and qualitative, attributes, variables, scales of measurement - nominal, ordinal, interval and ratio. Presentation: tabular and graphic, including histogram and ogives. Concepts of statistical population and sample. Sampling from finite population - Simple random sampling, Stratified and systematic random sampling procedures (definitions and methods only). Concepts of sampling and non-sampling errors.

Unit 2: Univariate and Bivariate Data Analysis

Measures of Central Tendency: mathematical and positional. Measures of Dispersion: range, quartile deviation, mean deviation, standard deviation, coefficient of variation, moments, skewness and kurtosis. Bivariate data, scatter diagram, Correlation, Karl-Pearson's correlation coefficient, Rank correlation. Simple linear regression, principle of least squares and fitting of polynomials and exponential curves.

(10 Hours)

(10 Hours)

Unit 3: Probability and Distributions

Probability: Random experiment, trial, sample space, events-mutually exclusive and exhaustive events. Classical, statistical and axiomatic definitions of probability, addition and multiplication theorems, Bayes theorem (only statements). Discrete and continuous random variables, probability mass and density functions, distribution functions, expectation of a random variable.

Standard univariate distributions: Binomial, Poisson and Normal distributions (Elementary properties and applications only).

Unit 4: Sampling Distributions and Testing of Hypothesis(10 Hours)

Distribution of sample mean from a normal population, Chi-square, t and F distributions (No derivations) and their applications.

Statistical Hypothesis – null and alternative hypothesis, simple and composite hypothesis. Type I and Type II errors, level of significance, critical region, P-value and its interpretation.

Test for single mean, equality of two means, single variance, and equality of two variances for normal populations.

References

1. Daniel, W. W. (2007 Biostatistics - A Foundation for Analysis in the Health Sciences, Wiley

2. T.W. Anderson and Jeremy D. Finn(1996). The New Statistical Analysis of Data, Springer.

- 3. MukhyopadyayaP(1999). Applied Statistics, New Central book Agency, Calcutta.
- 4. Ross, S.M. (2014) Introduction to Probability and Statistics For Engineers and Scientists.
- 5. Cochran, W G (1984): Sampling Techniques, Wiley Eastern, New Delhi.

(12 Hours)

3. Business Statistics (Open Elective)

Course Objectives

- 1. Provide an introduction to basics of statistics within a financial context.
- 2. To enable students to use statistical techniques for analysis and interpretation of business data.

Course Outcomes (CO)

Upon the completion of this course students should be able to:

CO1.Frame and formulate management decision problems.

CO2.Understand the basic concepts underlying quantitative analysis.

CO3.Use sound judgment in the applications of quantitative methods to management decisions.

Pedagogy

1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.

2. Students are encouraged to use resources available on open sources.

Contents

Unit 1: Statistical Data and Descriptive Statistics

(12 hours)

Nature and Classification of data: univariate, bivariate and multivariate data; time-series and crosssectional data. Measures of Central Tendency: mathematical averages including arithmetic mean geometric mean and harmonic mean, properties and applications. Positional Averages Mode and Median (and other partition values including quartiles, deciles, and percentiles). Measures of Variation: absolute and relative. Range, quartile deviation, mean deviation, standard deviation, and their coefficients, Properties of standard deviation/variance Skewness: Meaning, Measurement using Karl Pearson and Bowley's measures; Concept of Kurtosis.

Unit 2: Simple Correlation and Regression Analysis

Correlation Analysis: Meaning of Correlation: simple, multiple and partial; linear and non-linear, Correlation and Causation, Scatter diagram, Pearson's co-efficient of correlation; calculation and properties (Proof not required). Correlation and Probable error; Rank Correlation.

Regression Analysis: Principle of least squares and regression lines, Regression equations and estimation; Properties of regression coefficients; Relationship between Correlation and Regression coefficients; Standard Error of Estimate and its use in interpreting the results.

Unit 3: Index Numbers

Definition, Problems involved in the construction of index numbers, methods of constructing index numbers of prices and quantities, simple aggregate and price relatives method, weighted aggregate and weighted average of relatives method, important types of weighted index numbers: Laspeyre's, Paasche's, Bowley's, Marshall- Edgeworth, Fisher's, method of obtaining price and quantity index numbers, tests consistency of index numbers, time reversal test and factor reversal test for index numbers, Uses and limitations of index numbers. Consumer price index number: Problems involved in the construction of cost of living index number, advantages and disadvantages, Aggregative expenditure method and Family budget method for the construction of consumer price index numbers. Definition and measurement of Inflation rate – CPI and GNP Deflator.

Unit 4: Time Series Analysis

Introduction, definition and components of Time series, illustrations, Additive, Multiplicative and mixed models, analysis of time series, methods of studying time series: Secular trend, method of moving averages, least squares method – linear, quadratic, exponential trend fittings to the data. Seasonal variation - definition, illustrations, measurements, simple average method, ratio to moving average method, ratio of trend method, link relatives method, Cyclical variation-definition, distinction from seasonal variation, Irregular variation- definition, illustrations.

References

 Levin, Richard, David S. Rubin, Sanjay Rastogi, and H M Siddiqui. Statistics for Management. 7th ed., Pearson Education.

(10 hours)

87

(10 Hours)

(10 hours)

- 2. David M. Levine, Mark L. Berenson, Timothy C. Krehbiel, P. K.Viswanathan, Business Statistics: A First Course, Pearson Education.
- 3. Siegel Andrew F. Practical Business Statistics. McGraw Hill Education.
- 4. Gupta, S.P., and Archana Agarwal. Business Statistics, Sultan Chandand Sons, New Delhi.
- 5. Vohra N. D., Business Statistics, McGraw Hill Education.
- 6. Murray R Spiegel, Larry J. Stephens, Narinder Kumar. Statistics (Schaum's Outline Series), Mc Graw Hill Education.
- 7. Gupta, S.C. Fundamentals of Statistics. Himalaya Publishing House.
- Anderson, Sweeney, and Williams, Statistics for Students of Economics and Business, Cengage Learning.

4. Quantitative Aptitude (Open Elective)

Course Objective

To train the students in the aspects of numerical ability, reasoning techniques and mental ability for competitive examinations conducted by various public and private boards.

Course Outcomes (CO)

After the successful completion of the course, the students will be able to develop the general skills required to Competitive Examinations.

Pedagogy

Activity based teaching and learning along with theoretical aspects using classroom teaching, group discussions and seminars.

Contents

Unit 1: Numerical Aptitude I

Number Systems, Computation of Whole Numbers, Decimals and Fractions and relationship between Numbers, Fundamental arithmetical operations.

Unit 2: Numerical Aptitude II

Percentages, Ratios and Proportions, Average, interest, Profit and Loss, Discount use of Tables and Graphs Time and Distance, Ratio and Time, Time and Work.

Unit 3: Reasoning and Mental Ability I

Coding-Decoding, Symbol notations, Number Series, Analogy & Classification, Blood relations, Direction Sense, Liner arrangement.

Unit 4: Reasoning and Mental Ability II

Ranking and Comparison, Input & output, Assumptions, Conclusion & Inferences.

References:

- 1. Aggarwal R.S., Quantitative Aptitude: by, Publication by S, Chand
- 2. Ningappa A H ,Mental Ability: Ashok Publication.

(10 hours)

(10 hours)

(**12 hours**) se of Tables

(10 hours)

KARNATAKA STATE AKKAMAHADEVI WOMEN'S UNIVERSITY, VIJAYAPURA. STATISTICS DSC and OE theory papers MODEL QUESTION PAPER Time:03Hrs. Max Marks: 70

Instructions – a) Part –A: Solve any ten questions from 12 questions b) Part-B: Solve any four questions from 6 questions c) Part-C: Solve any three questions from 5 questions

PART-A

