

 Page 1

The Infix, Prefix, Postfix Notation:

Applications of stack: There are a number of applications of stacks such as;

1) To print characters/string in reverse order.

2) Check the parentheses in the expression.

3) To evaluate the arithmetic expressions such as, infix, prefix and postfix.

Arithmetic expression: An expression is defined as a number of operands

or data items combined using several operators. There are basically three types of

notations for an expression;

1) Infix notation

2) Prefix notation

3) Postfix notation

Infix notation: It is most common notation in which, the operator is written or

placed in-between the two operands. For eg. The expression to add two numbers A

and B is written in infix notation as,

A+ B Operands

Operator

In this example, the operator is placed in-between the operands A and B. The

reason why this notation is called infix.

Prefix Notation: It is also called Polish notation, named after in the honor of the

mathematician Jan Lukasiewicz, refers to the notation in which the operator is

placed before the operand as,

+AB
As the operator ‘+’ is placed before the operands A and B, this notation is called

prefix (pre means before).

Postfix Notation: In the postfix notation the operators are written after the

operands, so it is called the postfix notation (post means after), it is also known as

suffix notation or reverse polish notation. The above postfix if written in postfix

notation looks like follows;

AB+

 Page 2

Notation Conversions: Let us take an expression A+B*C which is given in

infix notation. To evaluate this expression for values 2, 3, 5 for A, B, C

respectively we must follow certain rule in order to have right result. For eg.

A+B*C = 2+3*5 = 5*5 = 25!!!!!!!!

Is this the right result? No, this is because the multiplication is to be done before

addition, because it has higher precedence over addition. This means that for an

expression to be calculated we must have the knowledge of precedence of

operators.

Operator Precedence:

Operator Symbol Precedence

Exponential $ Highest

Multiplication/Division *,/ Next highest
Addition/Substraction +,- Lowest

Conversion from infix to postfix expression:

Algorithm

POSTFIX (Q, P)

Suppose Q is an arithmetic expression written in infix notation. This

algorithm finds the equivalent postfix expression P.

Step1: Push “(” onto STACK and add ’’)’’ to the end of Q.

Step2: Scan Q from left to right and repeat step 3 to 6 for each element of Q, until

the STACK is empty.

Step3: If an operand is encountered, push it to STACK.

Step4: If a left parenthesis is encountered, push it to STACK.

Step5: If an operator X is encountered, then

a) Repeatedly pop from STACK and add to P each operator (Top of Stack)

which has same precedence as or higher precedence than X.

b) Add X to STACK.

Step6: If a right parentheses is encountered, then;

a) Repeatedly pop from STACK and add to P each operator (top of stack)

until a left parentheses is encountered.

b) Remove the left parentheses from stack [Do not add it to P]

 Page 3

[End of if]

[End of step 2 loop].

Step7: Exit.

Note: In the Infix to postfix conversion expression algorithm x means any

mathematical operator such as +,-,*,/,$.

Example:

A-B /(C*D$E).

S.N. Symbol Scan STACK P (Postfix Expression)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

A

-

B

/

(

C

*

D

$

E

)

)

(
(

(-

(-

(-/

(-/(

(-/(

(-/(*

(-/(*

(-/(*$

(-/(*$

(-/

A

A

AB

AB

AB

ABC

ABC

ABCD

ABCD

ABCDE

ABCDE$*

ABCDE$*/-

Required postfix expression (P) = ABCDE$*/-

Evaluating a postfix expression:
Algorithm for evaluating postfix expression:

Let P is an expression written in postfix notation.

1) STACK=empty stack.

2) Scan P from left to right and repeat step 3 and 4 for each symbol in P until

end of expression.

3) If an operand is encountered, push it on STACK.

4) If an operator x encountered then;

a) Operand 2= pop (STACK).

b) Operand 1= pop (STACK).

c) Value= operand1 x operand 2.

 Page 4

d) Push value on STACK.

5) Return the value at top of the STACK.

6) Exit.

Tracing of algorithm

P= 623+-382/+*2$3+

S.N. Symbol Scan Operand 1 Operand 2 Value STACK

1. 6 6

2. 2 6,2

3. 3 6,2,3

4. + 2 3 5 6,5

5. - 6 5 1 1

6. 3 1,3

7. 8 1,3,8

8. 2 1,3,8,2

9. / 8 2 4 1,3,4

10. + 3 4 7 1,7

11. * 1 7 7 7

12. 2 7,2

13. $ 7 2 49 49

14. 3 49,3

15. + 49 3 52 52

Homework

Q. Convert the following infix expression into postfix expression.

1) (A+B)*C

2) (A+B)*C$E

3) ((A-(B+C))*D)$(E+F)

Q. Evaluate the following postfix expressions

1) AB+C-BA+C$-

2) ABC+*CBA-+*

Where, A=1, B=2, C=3.

 Page 5

Q. Evaluate the following prefix expression

a) -/A$BCD

b) *-A/BC-*DEF

where, A=2, B=1, C=4, D=3, E=5, F=1

